Error message

Deprecated function: The each() function is deprecated. This message will be suppressed on further calls in theme_biblio_custom() (line 367 of /home/ajbls/public_html/sites/all/modules/biblio/includes/biblio_theme.inc).

In silico Identification of Novel Compounds as Quorum-Sensing Inhibitors in Selected Waterborne Pathogens

Asian Journal of Biological and Life Sciences,2021,10,2,366-377.
Published:September 2021
Type:Original Article
Authors:
Author(s) affiliations:

Khirsten Marie Bawar1, Leannie Praise Cruz1, Kristine Bernadette Ilao1, Julianne Mica Justiniano1, Lara Mae Panganiban1, Diane Laine Fabito1, Christine Joy Amayun1, John Sylvester Nas1,2*

1Department of Medical Technology, Institute of Arts and Sciences, Far Eastern University Manila, Manila, PHILIPPINES.

2Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Manila, PHILIPPINES.

Abstract:

Quorum sensing (QS) is a process involved in producing, detecting, responding, and releasing signaling molecules to maintain physiological activities of most utilized by both gram-positive and gram-negative bacteria in various environmental conditions. This study aims to identify novel compounds that have potential QS inhibitory mechanisms against the gram-positive bacteria Staphylococcus aureus (S. aureus) and Streptococcus pneumoniae (S. pneumoniae), and the gram-negative bacteria Salmonella typhi (S. typhi) and Escherichia coli (E. coli). Compounds that are structurally similar to the known QS inhibitors were identified using ligand-based screening. Candidate compounds with 40 to 80% similarity with the known QS inhibitors were further evaluated through molecular docking with the QS-associated enzymes, namely ComA, ComE, LsrF, LsrK, AgrC, AgrA, LsrB, and Hfq. The binding affinity was visualized to identify the different non-covalent binding interactions. Compounds with <-8.0 kcal/mol docking score were considered for evaluation for their distribution coefficient (LogD) at different optimal growth of the bacteria, such as pH 4, 6, 7.4, 7.8, 8, and 9. Out of the 63 compounds evaluated, only three compounds demonstrated a high binding affinity, namely 1-phenyl-3-[5-(phenylcarbamoylamino)naphthalen-1-yl]urea and 1-naphthalen- 1-yl-3-[5-(naphthalen-1-ylcarbamoylamino)naphthalen-1-yl]urea with ComE of S. pneumoniae and 3-[(4-Methylphenyl)sulfonyl][1,2,3]triazolo[1,5-a]quinazolin-5(4H)-one to AgrA of S. aureus. Their high binding affinity may be attributed to the numerous hydrogen bonds and hydrophobic interactions. However, only 3-[(4-Methylphenyl)sulfonyl][1,2,3]triazolo[1,5-a]quinazolin-5(4H)-one has comparable LogD value with its QS inhibitor of AgrA, savarin, at the optimal growth pH for S. aureus. These findings suggest that the use of 3-[(4-Methylphenyl)sulfonyl][1,2,3]triazolo[1,5-a] quinazolin-5(4H)-one may be effective in controlling S. aureus growth probably through inhibition of AgrA. However, further studies are needed to confirm these findings.