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ABSTRACT
Quorum sensing (QS) is a process involved in producing, detecting, responding, and releasing 
signaling molecules to maintain physiological activities of most utilized by both gram-positive 
and gram-negative bacteria in various environmental conditions. This study aims to identify novel 
compounds that have potential QS inhibitory mechanisms against the gram-positive bacteria 
Staphylococcus aureus (S. aureus) and Streptococcus pneumoniae (S. pneumoniae), and the 
gram-negative bacteria Salmonella typhi (S. typhi) and Escherichia coli (E. coli). Compounds that 
are structurally similar to the known QS inhibitors were identified using ligand-based screening. 
Candidate compounds with 40 to 80% similarity with the known QS inhibitors were further evaluated 
through molecular docking with the QS-associated enzymes, namely ComA, ComE, LsrF, LsrK, AgrC, 
AgrA, LsrB, and Hfq. The binding affinity was visualized to identify the different non-covalent binding 
interactions. Compounds with <-8.0 kcal/mol docking score were considered for evaluation for their 
distribution coefficient (LogD) at different optimal growth of the bacteria, such as pH 4, 6, 7.4, 7.8, 
8, and 9. Out of the 63 compounds evaluated, only three compounds demonstrated a high binding 
affinity, namely 1-phenyl-3-[5-(phenylcarbamoylamino)naphthalen-1-yl]urea and 1-naphthalen-
1-yl-3-[5-(naphthalen-1-ylcarbamoylamino)naphthalen-1-yl]urea with ComE of S. pneumoniae 
and 3-[(4-Methylphenyl)sulfonyl][1,2,3]triazolo[1,5-a]quinazolin-5(4H)-one to AgrA of S. aureus. 
Their high binding affinity may be attributed to the numerous hydrogen bonds and hydrophobic 
interactions. However, only 3-[(4-Methylphenyl)sulfonyl][1,2,3]triazolo[1,5-a]quinazolin-5(4H)-one 
has comparable LogD value with its QS inhibitor of AgrA, savarin, at the optimal growth pH for S. 
aureus. These findings suggest that the use of 3-[(4-Methylphenyl)sulfonyl][1,2,3]triazolo[1,5-a]
quinazolin-5(4H)-one may be effective in controlling S. aureus growth probably through inhibition 
of AgrA. However, further studies are needed to confirm these findings.

Key words: In silico, Ligand-based screening, Molecular docking, Quorum sensing, Waterborne 
pathogens.

INTRODUCTION
In the Philippines, many are still at risk of  contracting 
poorly managed water supply.[1] This problem introduces  
a significant risk of  contracting waterborne diseases, 

despite great efforts to raise awareness. There were  
reported cases of  acute bloody diarrhea, cholera,  
rotavirus, hepatitis A, and typhoid fever due to food and 
water contamination.[2] Acute bloody diarrhea caused by 
waterborne pathogens often implies urgent epidemic 
control in the community.[3] Waterborne typhoid fever 
outbreaks also indicate a devastating public health 
implication since it is associated with the consumption  
of  contaminated groundwater and surface water  
supplies.[4] Moreover, the transmission of  diseases such  
as cholera, diarrhea, dysentery, hepatitis A, typhoid, and 
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polio are also linked to contaminated water and poor 
sanitation. Parasitic and bacterial infections associated  
with waterborne diseases pose a significant threat,  
especially in developing tropical or subtropical countries 
like the Philippines. These pathogens typically lead to 
various gastrointestinal diseases.[5]

There are numerous waterborne pathogens present 
in the environment. However, the study will focus on 
representative organisms common in the Philippines, 
namely Salmonella typhi (S. typhi), Escherichia coli (E. coli), 
Staphylococcus aureus (S. aureus), and Streptococcus pneumoniae  
(S. pneumoniae). Both S. aureus and S. pneumoniae are  
considered gram-positive bacteria, whereas S. typhi and 
E. coli are gram-negative bacteria. These waterborne 
pathogens are associated with various diseases that 
could potentially lead to life-threatening conditions in 
humans.
Salmonella typhi is bacteria that only infect humans. They 
are primarily found in water primarily in bodies of  water 
that are contaminated by human feces.[6] Ingesting water 
contaminated by S. typhi can affect the intestinal of  an 
individual and can cause intestinal perforation.[7] The  
most common associated disease of  S. typhi is the  
commonly known typhoid fever. Typhoid fever occurs 
most commonly in the Philippines and other countries 
with limited access to clean water and has poor water 
sanitation.[8] Infected individuals with typhoid fever  
would most likely experience diarrhea, nausea, abdominal  
pain, malaise, and enlarged liver.[8] Almost similar 
symptoms are observed after other bacterial infections 
like in E. coli.
E. coli is also a gram-negative bacterium that localizes in 
the intestine.[9] Most of  the strains of  E. coli which are 
part of  our normal microflora, are harmless. However,  
there were those strains capable of  releasing Shiga  
toxin.[10] This toxin leads to symptoms such as bloody  
diarrhea, vomiting and can severely lead to a life-
threatening condition such as damage of  the organs, 
which could lead to complications and death.[11] Bacterial  
infection is common in gram-negative bacteria and 
gram-positive bacteria, such as S. aureus and S. pneumoniae.
S. aureus is a gram-positive present in the nasal microflora. 
However, sometimes it also causes skin infection.[12]  
Aside from this, this bacterium can also trigger  
pneumonia, heart valve infections, and bone infections. 
Usually, inhalation of  the dispersed droplets of  an  
infected person is sufficient to infect other individuals.[13] 
Meanwhile, S. pneumoniae is an opportunistic pathogen 
that resides and colonizes the upper respiratory tract of  
the host that can cause severe infection, damage, and 
severe conditions.[14] Its transmission increases with  

contact with the liquid or aerosol droplets, and fomites  
intermediates, and close contact with the infected  
individual.[15]

Most bacteria use quorum sensing to maintain their  
physiological activities in various environmental  
settings.[16] This concept leads to the understanding of  
cell-to-cell communication in unicellular organisms and 
its importance for survival.[17] This process involves the  
production, detection, response, and release of  chemical  
signal molecules called autoinducers (AIs) affected by 
different environmental conditions.[18] Moreover, the 
regulation of  these signaling systems dictates bacterial  
growth and even motility.[19] This principle attracts  
various researchers to synthesize compounds that will 
influence the Quorum-sensing associated pathways.[19]

Different antibiotics target different signaling pathways, 
but one of  the most common targets is the pathways 
associated with quorum sensing.[16] Antimicrobial agents  
have been widely used all over the world to prevent 
bacterial infections. However, most of  these pathogens 
have developed resistance to a wide variety of  commonly  
used antibiotics, such as daptomycin, vancomycin,  
penicillin, and methicillin.[17] Hence, the identification  
and synthesis of  novel compounds will aid in the screening  
method during drug development.
With various infections and drug resistance problems 
currently observed worldwide, chemical interference 
with bacterial cell-to-cell communication is potentially 
an effective way to control these infections.[20] With 
the use of  virtual screening techniques, such as QSAR 
modeling, to predict the physicochemical properties 
of  the novel compound; and molecular docking to 
determine the binding affinity and interactions of  
the novel compounds, this study would be able to 
determine a novel compound that can inhibit the 
quorum sensing activity of  the selected waterborne 
pathogens.[21]

This study aims to identify novel compounds that have 
potential quorum sensing inhibitory mechanisms against 
selected waterborne pathogens. With ligand-based 
screening techniques, compounds with high structural 
similarity with the known QS inhibitors were identified. 
Moreover, the molecular docking experiment predicted  
the binding interaction of  these compounds to determine 
the solubility coefficient of  the candidate compounds  
with the QS-associated enzymes in the selected 
waterborne pathogens.[22] Lastly, assessing the LogD of  
the compounds can be associated with the solubility and 
distribution efficiency of  the compound in a particular 
environmental pH.[22] 
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MATERIALS AND METHODS
Ligand-based Screening of Candidate Compounds

The known inhibitory ligands of  the quorum-sensing 
associated enzymes AgrC and AgrA of  Staphylococcus 
aureus are AIP-III (CID: 102228828) and savirin (CID: 
3243271) respectively, while for the enzymes ComA and 
ComE of  Streptococcus pneumoniae, the known inhibitory 
compounds are 1,3-disubstituted ureas (CID: 9509) and 
fluoride (CID: 28179), respectively. For the enzymes 
of  Salmonella typhi, namely LrsB and Hfq, the known 
inhibitory ligand is rifampicin (CID: 135398735). Lastly, 
for the enzymes LsrF and LsrK of  Escherichia coli, the 
known inhibitory ligands are (3-hydroxy-2-oxopropyl) 
dihydrogen phosphate (CID: 77620531) and celastrol 
(CID: 122724), respectively. The 3D structure of  
these compounds was exported from PubChem (www.
pubchem.ncbi.nlm.nih.gov) and imported in Ligand-
Based Virtual Screen-Workflow Builder (Mcule, USA). 
The similarity threshold was adjusted until at least 1 
compound is detected.

Virtual Molecular Docking of the Candidate 
Compounds

Using the identified active and binding sites for each 
enzyme, the candidate compounds were docked to 
their respective enzymes using Mcule. Before docking, 
the preparation of  the enzymes was followed based 
on a previous study.[23] The 3D structure of  the 
candidate compounds was retrieved from PubChem 
(http://pubchem.ncbi.nlm.nih.gov). The researchers 
downloaded the crystal structures of  the QS-associated 
enzymes ComA (PBD ID: 5XE8), ComE (PBD ID: 
4CBV), LsrF (PBD ID: 3GLC), LsrK (PBD ID: 5YA0), 
AgrC (PBD ID: 4BXI), AgrA (PBD ID: 4G4K), LsrB 
(PBD ID: 5GTA), and Hfq (PBD ID: 2YLC) from Protein  
Database (https://www.rcsb.org/). The predicted  
docking score with <-8.0kcal/mol was considered a 
high binding affinity.[23] The binding interactions of  the  
compounds were visualized using JSMol (JMol 
Development Team, USA).

Evaluation of the LogD values of the Candidate 
Compounds

The canonical smiles of  the compounds were exported 
from PubChem and imported in ChemAxon (USA) to 
calculate their LogD value at different pH. The different 
pH considered pertains to the optimal growth rate pH  
of  the pathogens, as follows: E. coli (pH 6.5 and 7.5);  
S. typhi (pH 4.0 and 9.0); S. aureus (pH 4.0 and 9.8); and 
S. pneumoniae (pH 6.5 and 8.3). 

RESULTS
Ligand-based Screening of Candidate Compounds

Compounds that were considered to be similar to the 
known inhibitors have a threshold value of  0.4 to 0.8, 
as shown in Table 1. In S. typhi, the known inhibitor  
of  LsrB, rifampicin, has three structurally similar  
compounds at the threshold value of  0.4. The Hfq 
inhibitor, rifampicin, has three similar compounds at the 
threshold value of  0.4. In E. coli, the known inhibitor of  
LsrF, (3-hydroxy-2-oxopropyl) dihydrogen phosphate,  
has three structurally similar compounds at the threshold  
value of  0.6. In contrast, LsrK inhibitor celastrol has 
three similar compounds at a threshold value of  0.8.  
In S. aureus, the known inhibitor of  AgrC, Autoinducing  
peptide (AIP) III, has two structurally similar 
compounds at a threshold value of  0.7. In contrast, 
AgrA inhibitor savirin only has one similar compound 
at a threshold value of  0.7. In S. pnuemoniae, the known  
inhibitor of  ComA, fluoride, has two structurally similar  
compounds at the threshold value of  0.8; whereas, 
ComE inhibitor, 1,3-Disubstituted Urea, has 49 similar 
compounds at a threshold value of  0.7.

Virtual Molecular Docking of the Candidate 
Compounds

The 3D structure of  the novel compounds was docked 
in the crystal structure of  the different quorum sensing  
associated proteins on the selected bacteria, namely  
S. typhi, E. coli, S. pneumoniae, and S. aureus. The binding  
affinity of  the novel compounds with the different  
quorum sensing enzymes is shown in Table 1. 
Compounds with the most negative docking scores  
(<-8 kcal/mol) were considered high binding affinities.[24]  
In S. typhi, all the novel compounds have a low binding  
affinity to LsrB and Hfq. Meanwhile, in S. aureus, 
only 3-[(4-Methylphenyl)sulfonyl][1,2,3]triazolo[1,5-a]
quinazolin-5(4H)-one, has a high binding affinity to 
AgrA, while the rest of  the compounds has a low binding 
affinity to AgrC. In S. pneumoniae, two compounds,  
namely 1-naphthalen-1-yl-3-[5-(naphthalen-1-
ylcarbamoylamino)naphthalen-1-yl]urea and 1-phenyl-3-
[5-(phenylcarbamoylamino)naphthalen-1-yl]urea, have 
a high binding affinity to ComE, while the rest of  the  
compounds has a low binding affinity to ComA. In  
E. coli, the novel compounds 2-(1H-imidazol-5-yl)
butanedioic acid, 2-(1H-imidazol-5-yl)butanoic acid, 
and 2-(1H-imidazol-5-yl)-3-methylbutanoic acid has 
a low binding affinity to LsrF. Meanwhile, the visual 
structure for LsrK cannot be generated.
The main non-covalent interactions between the novel 
compounds and the different quorum sensing enzymes 
were hydrophobic interactions and hydrogen bonds, 
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Table 1: Novel compounds similar with the known inhibitors of the selected waterborne pathogens’ QS Enzyme 
and their corresponding threshold and docking score.

Organism QS 
Enzyme

Known Inhibitor Chemical ID 
(CID)

Novel Compound (IUPAC Name) Threshold Docking 
score

S. typhi LsrB rifampicin 135398735 N-(5-Ethoxy-2-methyl-2,3-dihydro-1-
benzofuran-6-yl)cyclohex-3-ene-1-

carboxamide

0.4 -0.5

Hfq rifampicin 135398735 2-(Cyclopent-2-en-1-yl)-N-(5-ethoxy-2-
methyl-2,3-dihydro-1-benzofuran-6-yl)

acetamide

0.4 -2.4

N-(5-Ethoxy-2-methyl-2,3-dihydro-
1-benzofuran-6-yl)-2-methoxy-5-

methylbenzamide

0.4 -2.9

E. coli LsrF (3-hydroxy-
2-oxopropyl) 
dihydrogen 
phosphate

77620531 2-(1H-imidazol-5-yl)butanedioic acid 0.6 -5.35

2-(1H-imidazol-5-yl)butanoic acid 0.6 -4.87

2-(1H-imidazol-5-yl)-3-methylbutanoic acid 0.6 -5.12

LsrK celastrol 122724 (2R,4aS,6aR,6aS,14aR,14bR)-10-hydroxy-
2,4a,6a,6a,9,14a-hexamethyl-11-oxo-

1,3,4,5,6,13,14,14b-octahydropicene-2-
carboxylic acid 

0.8 cannot be 
generated

(2S,4aS,6aR,6aS,14aS,14bR)-10-hydroxy-
2,4a,6a,6a,9,14a-hexamethyl-11-oxo-

1,3,4,5,6,13,14,14b-octahydropicene-2-
carboxylic acid

0.8 cannot be 
generated

10-hydroxy-2,4a,6a,6a,9,14a-hexamethyl-11-
oxo-1,3,4,5,6,13,14,14b-octahydropicene-2-

carboxylic acid

0.8 cannot be 
generated

S. aureus AgrC autoinducing 
peptide (AIP) III

102228828 (3R,4R)-1-(7a-Methyl-5-oxo-2,3,6,7-
tetrahydropyrrolo[2,1-b][1,3]thiazole-3-

carbonyl)-4-phenylpyrrolidine-3-carboxylic 
acid

0.7 -4.05

(3R,4R)-1-(3-Pentanoyl-1,3-thiazolidine-4-
carbonyl)-4-phenylpyrrolidine-3-carboxylic 

acid

0.7 -3.92

AgrA savirin 3243271 3-[(4-Methylphenyl)sulfonyl][1,2,3]
triazolo[1,5-a]quinazolin-5(4H)-one

0.7 -8.85

S. 
pneumoniae

ComA fluoride 28179 hydron;fluoride 0.8 -0.8

fluorane 0.8 -0.8

ComE 1,3-Disubstituted 
Urea

9509 1,3-bis[4-(dimethylamino)phenyl]urea 0.7 -5.825

1-(4-aminophenyl)-3-[4-(dimethylamino)
phenyl]urea

0.7 -6.125

1-[4-(methylamino)phenyl]-3-phenylurea 0.7 -6.5

N’-[4-(methylamino)phenyl]-N-
phenylcarbamimidate

0.7 -6.375

1-phenyl-3-[4-(phenylcarbamoylamino)
phenyl]urea

0.7 -7.7

1,3-bis(4-aminophenyl)urea 0.7 -6.1

1-(4-aminophenyl)-3-phenylurea 0.7 -6.775

1-[4-(dimethylamino)phenyl]-3-phenylurea 0.7 -6.0

1-naphthalen-1-yl-3-[5-(naphthalen-1-
ylcarbamoylamino)naphthalen-1-yl]urea

0.7 -8.55

1-[4-(dimethylamino)phenyl]-3-naphthalen-
1-ylurea

0.7 -7.15

Continued...
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Table 1: Cont'd.
Organism QS 

Enzyme
Known Inhibitor Chemical ID 

(CID)
Novel Compound (IUPAC Name) Threshold Docking 

score
1-phenyl-3-[5-(phenylcarbamoylamino)

naphthalen-1-yl]urea
0.7 -8.125

1,1-dimethyl-3-[4-(methylamino)phenyl]urea 0.7 -5.125
1-(4-aminophenyl)-1,3-dimethylurea 0.7 -5.2

3-[4-(dimethylamino)phenyl]-1,1-
dimethylurea

0.7 -5.325

1-methyl-3-[4-(methylcarbamoylamino)
phenyl]urea

0.7 -5.25

3-[4-(dimethylcarbamoylamino)phenyl]-1,1-
dimethylurea

0.7 -5.2

1-(4-aminophenyl)-3-methylurea 0.7 -5.2
1-methyl-3-[5-(methylcarbamoylamino)

naphthalen-1-yl]urea
0.7 -6.375

1,3-dimethyl-1,3-diphenylurea 0.7 -6.8
1-methyl-1,3-diphenylurea 0.7 -6.7

1,3-diphenylurea 0.7 -6.625
1,3-dinaphthalen-1-ylurea 0.7 -7.5

1-methyl-3-naphthalen-1-yl-1-phenylurea 0.7 -7.5
1-naphthalen-1-yl-3-phenylurea 0.7 -7.3
1-naphthalen-2-yl-3-phenylurea 0.7 -7.275

1,3-diphenyl-1-[4-(phenylcarbamoylamino)
phenyl]urea

0.7 -7.725

1,3-bis(4-anilinophenyl)urea 0.7 -7.9
1-(4-anilinophenyl)-3-phenylurea 0.7 -7.35

1,3-dimethyl-1-phenylurea 0.7 -5.6
1,1,3-trimethyl-3-phenylurea 0.7 -5.625

1-methyl-3-phenylurea 0.7 -5.05
1,1-dimethyl-3-phenylurea 0.7 -5.5

1,1-dimethyl-3-naphthalen-2-ylurea 0.7 -6.8
1-methyl-3-naphthalen-2-ylurea 0.7 -6.725
1-methyl-3-naphthalen-1-ylurea 0.7 -6.875

1,1-dimethyl-3-naphthalen-1-ylurea 0.7 -6.725
1-(4-anilinophenyl)-3-methylurea 0.7 -6.35
[4-(dimethylamino)phenyl]urea 0.7 -5.3

[4-(carbamoylamino)phenyl]urea 0.7 -5.125
(4-aminophenyl)urea 0.7 0.15

1-(4-aminophenyl)-3-[3-(dimethylamino)
phenyl]urea

0.7 -6.225

N-[4-[[4-(dimethylamino)phenyl]
carbamoylamino]phenyl]acetamide

0.7 0.3

N-methyl-N-[4-(phenylcarbamoylamino)
phenyl]acetamide

0.7 -6.775

1,3-bis[4-(diethylamino)phenyl]urea 0.7 0.25
N-[4-[(4-acetamidophenyl)carbamoylamino]

phenyl]acetamide
0.7 -6.5

N-[4-[[4-[acetyl(methyl)amino]phenyl]
carbamoylamino]phenyl]-N-methylacetamide

0.7 0.1625

1-[4-(diethylamino)phenyl]-3-phenylurea 0.7 -6.55
N-[4-(phenylcarbamoylamino)phenyl]

acetamide
0.7 0.1

1-[4-(ethylamino)phenyl]-3-methylurea 0.7 -5
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as shown in Table 2. Out of  all the novel compounds  
found to be structurally similar with the known inhibitors, 
only three novel compounds are found to have high 
binding affinity; namely, 3-[(4-Methylphenyl)sulfonyl]
[1,2,3]triazolo[1,5-a]quinazolin-5(4H)-one from  
S. aureus, and 1-naphthalen-1-yl-3-[5-(naphthalen-1-
ylcarbamoylamino)naphthalen-1-yl]urea and 1-phenyl-
3-[5-(phenylcarbamoylamino)naphthalen-1-yl]urea 
from S. pneumoniae. The binding interactions of  these  
quorum sensing-associated enzymes and novel 
compounds with various amino acids are shown in 
Table 2.

In S. typhi, most novel compounds are docked in 
chain A of  LsrB; wherein there are more hydrophobic 
interactions than hydrogen bonds present. Similarly, 
there are more hydrophobic interactions in Hfq than 
hydrogen bonds. 
In E. coli, most of  the novel compounds docked in chain 
E of  LsrF exhibited more hydrogen bond formation 
than hydrophobic interactions. However, the crystal  
structure for LsrK cannot be generated.
In S. aureus, the amino acids where most of  the novel 
compounds were docked in chains A and B of  AgrC. 
Both novel compounds (3R,4R)-1-(7a-Methyl-5-oxo-2, 

Table 2: Binding interactions of the novel compounds with high affinity to various quorum sensing enzyme and 
their corresponding amino acid residue.

Organism QS 
enzyme

Known Inhibitor Novel Compound CID Binding Interaction Amino Acid

S. aureus AgrA Savirin 3243271 6 hydrophobic 
interactions

phe 161A
asn 177B 
arg 78B 

arg 178B 
tyr 229A 
tyr 229A 

1 hydrogen bond glu 163A 

3-[(4-Methylphenyl)
sulfonyl][1,2,3]

triazolo[1,5-a]quinazolin-
5(4H)-one

3244855 6 hydrophobic 
interactions

tyr 153B
asp158B

leu 175B (2)
asp 176B
glu 226A

2 hydrogen bonds asp 158B
tyr 229A

S. pnuemoniae ComE 1,3-Disubstituted 
Urea

9509 5 hydrophobic 
interactions

ile 29A 
ile 31A 

thr 128A 
lys 129A 
leu 133A 

1-naphthalen-1-yl-
3-[5-(naphthalen-1-
ylcarbamoylamino)

naphthalen-1-yl]urea

27190755

12 hydrophobic 
interactions

val 3A (2)
ile 29A 
pro 30A
ile 31A
leu 54A

ile 125A (2)
thr 128A

lys 129A (2)
leu 133A

2 hydrogen bonds lys 2A (2)

1-phenyl-3-[5-
(phenylcarbamoylamino)

naphthalen-1-yl]urea
4469005

10 hydrophobic 
interactions

val 3A (2)
ile 29A
pro 30A
ile 31A
leu 54A
ile 125A
leu 133A
asn 145A
asp 150A

3 hydrogen bonds pro 30A
asp 150A
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Figure 1: Crystal Structure of the (A) known inhibitor  
Savirin and the (B) ligand 3-[(4-Methylphenyl)sulfonyl][1,2,3]

triazolo[1,5-a]quinazolin-5(4H) with AgrA.

Figure 2: Crystal Structure of the A: known inhibitor (A) 
1,3-Disubstituted Urea, and ligands (B) 1-naphthalen-1-yl-3-[5-

(naphthalen-1-ylcarbamoylamino)naphthalen-1-yl]urea and 
(C) 1-phenyl-3-[5-(phenylcarbamoylamino)naphthalen-1-yl]

urea with Com E.

3,6,7-tetrahydropyr rolo[2,1-b][1,3]thiazole-3-
carbonyl)-4-phenylpyrrolidine-3-carboxylic acid and 
(3R,4R)-1-(3-Pentanoyl-1,3-thiazolidine-4-carbonyl)-4-
phenylpyrrolidine-3-carboxylic acid have 2 hydrophobic  
interactions and 2 hydrogen bonding. In AgrA, the 
novel compound 3-[(4-Methylphenyl)sulfonyl][1,2,3] 
triazolo[1,5-a]quinazolin-5(4H)-one has 6 hydrophobic  
interactions and 2 hydrogen bonding in two distinct  
amino acids. 3-[(4-Methylphenyl)sulfonyl][1,2,3]triazolo 
[1,5-a]quinazolin-5(4H)-one docked on AgrA of  S. aureus,  
showed to be one among the three novel compounds 
which have the highest binding affinity out of  all the 
novel compounds in this study, as shown in Figure 1. 
Savirin, the known inhibitor for S. aureus, was docked 
on AgrA and showed six hydrophobic interactions and 
one hydrogen bond in chain A, as shown in Figure 1. 
Among the compounds, the known inhibitor savirin 
has the least hydrogen bonding but showed to have 
the most number of  hydrophobic interactions along 
with 3-[(4-Methylphenyl)sulfonyl][1,2,3]triazolo[1,5-a]
quinazolin-5(4H)-one, which showed to have the most 
number of  non-covalent interactions. 
In S. pneumoniae, most novel compounds were docked in 
chain A of  isoleucine, leucine, and lysine. In ComA, no 
hydrophobic interactions and hydrogen bonding were 
noted. In ComE, there are more hydrophobic interactions 
present than the number of  hydrogen bonds since 
most of  the novel compounds have 1-12 hydrophobic  
interactions compared to the 1-6 hydrogen bond  
present various amino acids.

Notably, among the novel compounds for ComE of   
S. pneumoniae, 1-naphthalen-1-yl-3-[5-(naphthalen-1-
ylcarbamoylamino)naphthalen-1-yl]urea and 1-phenyl-
3-[5-(phenylcarbamoylamino)naphthalen-1-yl]urea, as  
shown in Figure 2 , are found to have the highest binding  
affinity out of  all 49 novel compounds. Furthermore, 
a known inhibitor for S. pneumoniae, 1,3-disubstituted 
urea, was docked to ComE and showed five hydrophobic 
interactions and no hydrogen bonding, as shown in  
Figure 2.

Assessment of the LogD values of the candidate 
compounds

The known inhibitors whose corresponding novel  
compounds scored <-8 kcal/mol in the docking 
experiment were evaluated for their LogD, as shown in  
Table 3. These known inhibitors were Savirin docked on 
AgrA of  S. aureus and 1,3-Disubstituted Urea docked on 
ComE of  S. pneumoniae. The Log D of  the counterpart  
novel compounds, namely 3-[(4-Methylphenyl)sulfonyl]
[1,2,3]triazolo[1,5-a]quinazolin-5(4H)-one that was 
docked on AgrA of  S. aureus, 1-naphthalen-1-yl-3-[5-
(naphthalen-1-ylcarbamoylamino)naphthalen-1-yl] urea, 
and 1-phenyl-3-[5-(phenylcarbamoylamino)naphthalen-
1-yl] urea that was docked on ComE of  S. pneumoniae 
were compared with that of  the known inhibitors.

DISCUSSION
Virtual screening method has been used in the drug  
discovery process for lead detection, lead optimization,  
and scaffold hopping.[25] In silico screening method  
offers an affordable and accessible alternative to high-
throughput screening for discovering new drugs.[26] It 
can also assess the potential toxicity of  the compounds  
and predict the binding interaction of  the drugs to  
vulnerable protein targets.[27] The researchers found 
novel compounds with structures similar to that of  
the known inhibitors of  the four selected waterborne 
pathogens, and these findings were used in molecular 
docking to test whether the novel compounds have high 
binding affinities.
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Recent studies regarding the novel compounds against 
S. typhi have not been associated with quorum sensing 
and antimicrobial properties. However, the following 
compounds derived from the same functional group  
had shown quorum sensing properties towards the  
different pathogen. Phenazine-1carboxamide had 
shown inhibition towards Pseudomonas.[28] N-(4-chloro-
phenyl)-2-[5-[4-(pyrrolidone-1-solfonyl)-phenyl]-[1,3,4] 
oxadiazol-2-yl-sulfanyl]-acetamide inhibits the 
adherence of  E. coli to the human ladder cells.[29] N,N-
Diethyl-m-methylbenzamide (DEET)-based repellent 
for Culex pipiens pallens is primarily a vector of  Wuchereria 
bancrofti.[30]

Likewise, the novel compounds against E. coli showed 
no studies on their quorum-sensing nor antimicrobial 
properties in recent years. However, other butanoic acid  
derivatives have shown quorum sensing and antimicrobial 
activity. Melia dubia extract containing myristic acid 
methyl ester has potential quorum quenching properties  
against E. coli.[31] 4-(4,5-dibromo-1-methyl-1H-
pyrrole-2-carboxamido) butanoic acid isolated from 
Agelas sp. inhibited QS of  C. violaceum.[32] Additionally, 
3-methylbutanoic acid and 2-methylbutyric acid had 
shown antibacterial activities is produced by Psuedomonas.
[33]

Furthermore, two more compounds of  E. coli show 
modulation of  quorum sensing activities in Pseudomonas  
spp. 1H-pyrrole-2-carboxylic acid and Phenazine carboxylic  
acid inhibit quorum sensing and related virulence factors  
of  Pseudomonas aeruginosa.[34,35] However, these mechanism  
is not yet demonstrated in E. coli.
The novel compound against S. aureus does not show 
significant findings associated with quorum sensing  
and antimicrobial properties. A similar compound 
from the family of  one of  the novel compounds, 
2-(4-methylphenyl)-1,3-thiazole-4-carboxylic acid and  
9H-xanthene-9-carboxylic acid, inhibits S. aureus 
infections by binding C terminus of  AgrA and disrupt 

AgrA-DNA binding.[36] This mechanism is similar with 
its known inhibitor, Savirin, which had shown to block 
autoinduction in S. aureus.[37]

In this study, the researchers considered -8 to -11  
kcal/mol as those with high binding affinities, following  
studies stating that those with higher binding affinity 
tend to have more unbound molecules than smaller  
ones with more negligible binding affinity.[38] The  
principle of  Gibbs free energy (ΔG) explains this  
occurrence, hence act as the basis of  changes and 
stability in protein-ligand binding. The more there is 
free energy, the more negative the docking scores are, 
which equates to higher binding affinity. Such change 
only occurs when Gibbs free energy is negative due to  
solvent-entropy gain and enthalpy decrease 
overcompensating the unfavorable contributions of  
enthalpy increase and entropy decrease. Thus, achieve 
the state of  equilibrium at constant pressure and  
temperature.[25] Scores of  <-15 kcal/mol tend to 
be too tight for the average half-life of  human 
proteins, and thus, were not considered in this 
study.[39] The docking score generated through 
molecular docking reflects the binding affinity of  
the ligands to their receptors, which means that the  
more negative the docking score, the higher the binding  
affinity. Compounds that demonstrated high binding 
affinities are 1-phenyl-3-[5-(phenylcarbamoylamino)
naphthalen-1-yl]urea, with a docking score of  -8.125 
kcal/mol, and 1-naphthalen-1-yl-3-[5-(naphthalen-1-
ylcarbamoylamino)naphthalen-1-yl]urea, with a docking 
score of  8.55 kcal/mol, that were both docked on ComE 
of  S. pneumoniae; and 3-[(4-Methylphenyl)sulfonyl][1,2,3]
triazolo[1,5-a]quinazolin-5(4H)-one, with a docking 
score of  -8.85 kcal/mol, that was docked on AgrA of  
S. aureus.
Understanding the mechanisms of  quorum sensing 
inhibition in designing drugs is critical to analyze the 
protein-ligand interactions. The intermolecular binding 

Table 3: LogD value of the known inhibitors and novel compounds that has binding affinity with the respective 
QS enzymes at the optimal pH of its corresponding bacteria.

Organism Compounds
pH

4 6 7.4 7.8 8 9

S. aureus (AgrA)
Savirin 2.56 2.56 2.56 - 2.56 2.56

3-[(4-Methylphenyl)sulfonyl][1,2,3]triazolo[1,5-a]
quinazolin-5(4H)-one 1.83 1.82 1.82 - 1.82 1.82

S. pneumoniae (ComE)

1,3-Disubstituted Urea - 3 - 3 3 3

1-naphthalen-1-yl-3-[5-(naphthalen-1-
ylcarbamoylamino)naphthalen-1-yl]urea - 7.23 - 7.23 7.23 7.23

1-phenyl-3-[5-(phenylcarbamoylamino)naphthalen-
1-yl]urea - 5.25 - 5.25 5.25 5.25
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infection.[48] The attenuation of  S. pnuemoniae infectivity 
may be made possible through the inhibition CSP, along  
with the ComE transcription factor, deeming it a  
therapeutic approach to counter clinical conditions  
caused by chronic biofilm, more specifically 
pneumococcal infections.[49,50] 

Binding affinity is also influenced by various non-covalent  
intermolecular interactions such as hydrogen bonds  
and hydrophobic interactions.[51] Notably, understanding  
the concept of  hydrogen bonding is also essential for 
predicting accurate protein-ligand binding since its  
contribution is considered to have significance in  
protein-ligand interactions. A strong hydrogen bonding  
is required for most ligands to have a high binding  
affinity.[52] However, the ability of  the protein-ligand  
interactions to exhibit high binding affinities is attributed  
to the general non-covalent interactions present,[53] as in 
the case of  this study, more hydrophobic interactions 
are seen in comparison to the number of  hydrogen 
bonds. These hydrophobic interactions often contribute 
significantly to the binding affinity in ligands with large 
lipophilic groups.[53]

In S. typhi, novel compounds for both LsrB and LsrK 
have more hydrophobic interactions than hydrogen  
bonds present, moderately increasing the binding  
affinity of  the QS enzymes with the novel compounds. 
However, compared to the other novel compounds in 
this study, the total non-covalent interactions present in 
LsrB and LsrK are lesser, hence lower binding affinities.
Conversely, there are more hydrogen bonds than  
hydrophobic interactions present in the novel compounds  
for LsrF in E. coli. In contrast, the novel compounds for 
LsrK neither showed hydrogen bonds nor hydrophobic  
interactions as its crystal structure could not be  
generated. Likewise, the novel compounds for LsrF 
have lesser total non-covalent interactions that contribute  
to its low binding affinity.
In S. aureus, there is an equal number of  hydrogen  
bonds and hydrophobic interactions present in the novel 
compounds for AgrC. At the same time, there are more  
hydrophobic interactions than hydrogen bonds present  
in 3-[(4-Methylphenyl) sulfonyl][1,2,3]triazolo[1,5-a]
quinazolin-5(4H)-one, the only novel compound for 
AgrA. Of  the two QS enzymes, the novel compound  
for AgrA has a more significant number of  hydrophobic  
interactions. However, it also has a more significant 
total number of  non-covalent interactions present, thus, 
increasing its binding affinity.
In S. pneumoniae, hydrophobic interactions and hydrogen  
bonds were not present in the novel compounds for 
ComA. On the other hand, there are more hydrophobic 
interactions than hydrogen bonds in the novel  

interactions present in the novel compounds and the 
different quorum sensing enzymes, such as hydrogen  
bonding and hydrophobic interactions, are critical  
factors in stabilizing the favored ligands of  the  
compound.[40] Hydrophobic interactions are essential 
for folding proteins, keeping them stable, biologically 
active, and decreasing undesirable interactions with 
water.[41] This type of  interaction is also considered 
the main driving force in drug-receptor interactions.[42]  
Likewise, hydrogen bonds also contribute to the stability  
of  the protein-ligand complex, taking into consideration 
the H-bond donor and acceptor present, which can 
indicate whether the protein-ligand complex has a  
weak or strong interaction. H-boding pairing is a practical  
design for ligands with high binding affinity because it  
is considered the facilitator for binding ligands to specific  
proteins. However, H-bond donors and acceptors can 
affect the binding affinity results when establishing a 
robust protein-ligand interaction since it causes the 
pairings to have synergistic strong-strong or weak-weak  
H-bonding capacity. A mixed strong-weak H-bond pairing  
decreases the binding affinity of  the compound.[43]

The Agr quorum-sensing system in S. aureus is essential 
for virulence regulation by increasing the expression of  
toxins and degradative exoenzymes.[44] The Agr system 
coordinates the transition to an invasive mode, which 
involves increased virulence factor development and 
decreased surface proteins. AgrA directly controls the 
expression of  many genes associated with virulence  
regulation. It induces the gene transcription of  the  
phenol-soluble modulin (PSM) α and β proteins30 and  
the AgrBDCA operon at the P2 promoter and the 
regulatory RNA, RNAIII, at the P3 promoter.[45] Inhibition  
of  the Agr system entails the downregulation of  the  
virulence factors that are often necessary for the  
progression of  diseases such as infective endocarditis, 
skin and soft tissue infections, pneumonia, and septic 
arthritis, and osteomyelitis.[44] Impingement or complete 
obstruction of  such a system is an effective means to 
weaken the virulence of  staphylococcal pathogens and 
control the staphylococcal disease.[37]

S. pneumoniae’s capsular polysaccharide (CPS) is a key 
virulence factor necessary for effective colonization of  
the host’s nasopharyngeal tract and invasive infections in 
the blood and lungs.[46] Peptide pheromone, competence-
stimulating peptide (CSP), regulates the acquisition  
of  antibiotic resistance genes in S. pneumoniae. CSP 
binds to the ComD receptor, which activates the ComE 
transcription factor, tagged as the “master regulator of   
competence”[47] to initiate DNA uptake and integration  
into the S. pneumoniae genome. CSP-ComD/E also  
controls the expression of  virulence factors needed for 
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compounds for ComE. Notably, the two novel  
compounds of  ComE, namely, 1-naphthalen-1-yl-3-
[5-(naphthalen-1-ylcarbamoylamino)naphthalen-1-yl] 
urea and 3-[(4-Methylphenyl)sulfonyl]
[ 1 , 2 , 3 ] t r i a z o l o [ 1 , 5 - a ] q u i n a z o l i n - 5 ( 4 H ) -
one, despite having a greater number  
of  hydrophobic interactions, the total number of  non-
covalent interactions present for both is high, thus, 
increasing its binding affinity.
The LogD value measures the pH-dependent differential 
solubility of  all species in the octanol and water system. 
Therefore it is considered a suitable descriptor for 
the lipophilicity of  ionizable compounds.[54] LogD 
appears to be important for analyzing properties of  
candidate drugs in various biologic conditions with  
varying pH and a key factor that can determine binding  
affinity to target proteins.[55] It is used to measure the 
lipophilicity of  candidate drugs, which contributes to  
its ADMET (absorption, distribution, metabolism,  
excretion, and toxicity) properties and its solubility,  
permeability, potency, and selectivity. It can foresee the 
success or failure rate of  drug discovery and development 
since it is used in vitro and in silico evaluation.[56] High 
lipophilicity, with a logD value of  greater than 5, 
affects the properties as mentioned earlier as it tends to  
bind to hydrophobic targets rather than the target  
protein. At the same time, low lipophilicity can also 
affect the permeability and potency that can result in 
low efficacy of  the compound. Generally, logD values  
ranging from 1-3 are considered to have optimal 
physicochemical and ADME properties for oral drugs 
with optimal bioavailability.[57,58]

The pH 4, 6, 7.4, 7.8, 8, and 9 were considered in the 
study to account for the environmental pH of  the 
pathogens’ optimal growth. Also, the physiologically 
relevant pH of  the compound is in was considered, as 
well.[54] With the logD values of  the known inhibitors 
set as the reference values, the compound with logD 
values near this is considered soluble in that specific 
environmental pH wherein the growth of  the bacteria 
is optimal.
In S. aureus, the logD value of  the novel compound for 
AgrA, 3-[(4-Methylphenyl)sulfonyl][1,2,3]triazolo[1,5-a]
quinazolin-5(4H)-one, is 1.84 at pH 4 and 1.82 at pH 
6-9, which is considerably near the reference logD value 
of  savirin, the known inhibitor for AgrA, which is 2.56 
at pH 4-9, indicating that this novel compound has an 
optimal solubility in that specific pH. 
Conversely, the log D values of  the two novel compounds  
for ComE of  S. pnuemoniae, namely, 1-naphthalen-1-
yl-3-[5-(naphthalen-1-ylcarbamoylamino)naphthalen-
1-yl]urea and 3-[(4-Methylphenyl)sulfonyl][1,2,3]

triazolo[1,5-a]quinazolin-5(4H)-one, is 7.23 and 5.25  
respectively at pH 6-9. These logD values are considerably 
high in reference to the logD value of  1,3-disubstituted 
urea, the known inhibitor for ComE, three at  
pH 6-8 and 2.99 at pH 9. The predicted logD values  
of  the novel compounds indicate that these are highly  
lipophilic compounds, which are more likely to permeate  
biological membranes, and can lead to undesired events 
in vivo.

CONCLUSION
In this study, the researchers gathered 63 structurally 
similar compounds (40-80%) to the known quorum 
sensing inhibitors of  the various waterborne pathogens. 
LsrB and Hfq, QS enzymes for S. typhi, have one and 
two novel compounds, respectively. For E. coli, LsrF and  
LsrK QS enzymes have three novel compounds each. 
S. aureus QS enzymes AgrC have two novel compounds,  
and AgrA have one novel compound. Lastly, for  
S. pneumoniae, ComA enzyme has two novel compounds 
while ComE has 49 novel compounds. Out of  these 63 
compounds, only 3 compounds have demonstrated high 
binding affinities, namely 3-[(4-Methylphenyl)sulfonyl]
[1,2,3]triazolo[1,5-a]quinazolin-5(4H)-one of  AgrA, the  
QS enzyme of  S. typhi and the two novel compounds  
for ComE of  S. pnuemoniae, namely, 1-naphthalen-1-yl-3-[5-
(naphthalen-1-ylcarbamoylamino)naphthalen-1-yl]urea 
and 3-[(4-Methylphenyl)sulfonyl][1,2,3]triazolo[1,5-a]
quinazolin-5(4H)-one. The high binding affinities of  
these compounds may be attributed to the high number 
of  binding interactions, specifically the hydrogen bonds 
and hydrophobic interactions present. Apparently, the  
logD values of  the novel compound 3-[(4-Methylphenyl) 
sulfonyl][1,2,3]triazolo[1,5-a]quinazolin-5(4H)-one 
is near the reference logD values of  savirin, the known 
inhibitor for AgrA, indicating that this compound is 
soluble in the specific environmental pH wherein the  
growth of  S. aureus is optimal. However, the logD  
values of  the novel compound 1-naphthalen-1-yl-3-[5-
(naphthalen-1-ylcarbamoylamino)naphthalen-1-yl]urea 
and 3-[(4-Methyl phenyl)sulfonyl][1,2,3]triazolo[1,5-a] 
quinazolin-5(4H)-one are greater than the logD values  
of  1,3-disubstituted urea, the known inhibitor for ComE,  
indicating that these are highly lipophilic compounds in 
the specific environmental pH wherein the growth of   
S. pneumoniae is optimal. These findings may suggest  
the target enzyme of  these compounds during QS. 
However, these findings are not yet conclusive and need 
to be verified further by in vivo and in vitro investigations.
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ADMET: Absorption, Distribution, Metabolism, 
Excretion, and Toxicity.

SUMMARY
The alarming number of  multidrug resistant bacteria 
motivates the scientific community to identify novel 
compounds and target proteins. The QS activity of  
the bacteria is the typical target of  various drugs. In 
this study, through in silico experiment, different lead 
compounds were identified, which may modulate the 
QS activity in various waterborne pathogens.
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