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ABSTRACT
The advent of recent small non-coding RNA research enabled investigations of various non-coding 
factors like miRNAs, siRNAs and lncRNAs as post transcriptional modulators of viral pathogenesis 
either on a positive or negative note. Influenza A virus is responsible for contagious respiratory 
infection that invades the host cellular machinery to stimulate pathogenesis. The original public 
gene expression dataset GSE89008, from the Gene Expression Omnibus was analysed using 
the edgeR package and normalized log counts per million normalization. A variety of screening 
procedures were performed to understand the targets, miRNA transcripts, lncRNAs and the 
pathway enrichment. The interaction networks of the host mRNA-miRNA and lncRNA and viral 
siRNA- mRNA- host sense strands were constructed using the cytoscape. The study demonstrated 
a short list of miRNAs, which appear to be important regulators in virus–host interactions. Among 
them, hsa-mir-484, hsa-mir-1-3p, hsa-mir-149-5p, hsa-mir-615-3p, hsa-mir-34a-3p and hsa-mir-
324-3p, were shown to be highly capable of suppressing influenza infection. Transcription factors 
KLF41, NFYB, PLAG1, FOXO1, CEBPA and STAT1 were enhanced and may present as markers 
of influenza A infections. Viral-siRNAs -1534, 1537, 1538, 1540 and 1658 had great inhibitory 
efficacy and were predicted to silence NA, M and PA segments of viruses and suppress the 
viral pathogenesis by silencing the host genes most predominantly, the STAT, ELF and MAP3K 
genes. Elucidation of this unexpected antiviral facet of noncoding RNAs, will contribute to a better 
understanding of influenza–host interactions and can be established as biomarkers, or targets or 
therapeutic agents upon extensive research in future.

Key words: Influenza A virus, Gene expression profiles, mRNA, Noncoding RNA, Interaction network, 
Transcription factors.

INTRODUCTION

Influenza A virus (IAV) has been a major reason of  
pandemic and seasonal outbursts all over the world. 
Many variants of  IAV are evolving due to its high 
mutation rate, which elicits a major challenge in both  
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diagnosis and treatment in spite of  considerable medical  
advances.[1] Viruses generally depend on the host  
genome to replicate and hijack the host cellular functions  
in a complicating way.[2] A recent advancement in the 
molecular mechanism, called competing endogenous 
RNA (ceRNA) composed of  miRNA, siRNA and  
lncRNAs has made the genetic mechanisms under-
standable. They are all non-coding but interact with the 
transcript mRNA, thereby either repressing the mRNA 
or increasing them.[3] In many eukaryotic organisms, the  
mechanism of  RNA interference is an important anti-
viral defense mechanism. Micro RNAs (mirsNA) are 
non-coding endogenous RNAs and are either intragenic  
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(Processed from introns and very few exons) or intergenic 
(transcribed and regulated by their own promoters).[4]  

They are initially long precursors which are processed 
by type III ribonuclease Dicer into a ~22nucleotide 
long miRNA duplex along with the effectors Argonaute 
and in turn activate the microRNA Induced Silencing 
Complex (miRISC). MiRISC target the viral mRNA or 
genome with its sequence complementarity to a guide 
RNA strand called MicroRNA Response elements 
(MRE) and mediate the destruction of  viral genes.[5] 

Depending on the targets of  miRNA, the agronaute 
guides either viral transcripts or host Cellular transcripts 
involved in antiviral responses exhibiting a dual action 
mechanism.[6] Understanding of  miRNA targeting viral 
transcripts can be extensively studied to design new 
antiviral therapies. The miRNAs are circulated to the 
extracellular space and act as autocrine, paracrine, or 
endocrine regulators to target cellular activities.[7]

Long non-coding RNAs (lncRNA) are transcripts of  
~200 nucleotides which do not code proteins but are  
reported to interact with mRNA, Proteins, DNA and  
other ncRNAs.[8] In viral infections, lncRNAs demon-
strated interactions with the host miRNA or mRNA 
directly, thereby modifying a multitude of  functions 
including an influential roles in the virus – host inter-
actions.[8] During viral infections, there are certain miR-
NAs circulating which bind to 3’ untranslated regions 
of  mRNA thereby involved in post transcription regula-
tion.[9] The miRNA acts like sponges to lncRNA and acts 
on the host mRNA to either upregulate or downregulate 
the genes necessary for viral survival and pathogenicity.
[10]

Mutual interference between viruses and host-cell’s  
miRNA machinery has generated a more favorable  
cellular environment. The viruses are capable of  regulating  
their own miRNAs, by (i) evading cellular miRNAs, (ii) 
damaging the miRNA pathway by interacting with some 
key proteins (iii) synthesizing their own miRNA (iv) 
utilising cellular miRNAs to favor them.[11] Conversely, 
host-cell’s endogenous miRNAs are also able to target 
viral mRNAs either by repressing or increasing viral 
replication.[12]

Viral non-coding RNAs –v-miRNAs and v-siRNAs

Research investigations have unraveled that certain viral 
genomes encode viral miRNAs (v-miRNAs) which are  
expressed inside the host cells upon infection. The  
predominant functions of  v-miRNAs are viral persistence,  
survival and pathogenesis. They are capable of  inducing 
metabolic and cellular processes either by hijacking the 
host transcripts or suppressing them. The biogenesis 
of  v-miRNAs is similar to those of  eukaryotes and is 

processed by either DROSHA or DICER complexes.[13]  
siRNA are silencing RNAs, which are similar to miRNA 
but differ in their exogenous nature and occurrence in 
the cytoplasm. The mechanisms of  action of  siRNAs is 
transient and have perfect complementarity to the sense 
strand, whereas miRNAs are endogenous, cause trans-
lational repression and have limited complementarity.[14]

The present study involved RNA sequence analysis 
of  Human tracheobronchial epithelial (HTBE) cells 
that serve as an excellent associate of  influenza virus  
infection in the human respiratory tract. There is  
demonstrated evidence of  infection and defense 
responses in human respiratory epithelial cells due to 
influenza infections.[15] The mRNA sequence data set 
from Gene Expression Omnibus with the ID GSE89008 
included the cellular transcriptome of  HTBE cells at  
multiple time points in response to infection with influ-
enza A/California/04/09 (H1N1), A/Wyoming/03/03 
(H3N2) and A/Vietnam/1203/04 (H5N1) HALo virus.[16]  

This data set was analysed for the differentially 
expressed genes and the competing endogenous RNA 
(ceRNA) network. The study enables the elucidation of  
the molecular components and genes that are activated  
due to tracheobronchial influenza infection. These  
ceRNAs will enable the easy identification of  the 
infection at an earlier stage and lncRNAs can also act 
as therapeutic RNA candidates to suppress the overly 
expressed genes.[17]

METHODOLOGY
Raw data and Signature Generation

Raw RNA-seq data for publically available GEO dataset  
GSE89008 was downloaded from the GEO database  
(https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE89008) using the Bio-conductor package 
of  R language and quantified to gene-level counts.[12] 

The sequence data was generated from Human tracheo-
bronchial epithelial (HTBE) cells isolated from healthy  
donor airway epithelial tissue. The tissues were cultured  
and infected with influenza A/California/04/09 (H1N1),  
A/Wyoming/03/03 (H3N2) and A/Vietnam/1203/04 
(H5N1) and updated to GEO by Steel, et al. The HTBE 
transcriptome had 52 samples with mock control and  
H1N1, H3N2 and H5N1 infected samples that were  
collected at 3, 6, 12 and 18 hr post infection.[13] The 
data set was chosen based on three criteria 1) there 
were enough samples to understand the molecular 
mechanisms 2) Functional, target and non-coding gene  
enrichment analysis were not performed on the tran-
scriptome and 3) samples had three strains of  IAV 
which enabled the comparison of  the disease states. The 
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gene expression signature was generated by comparing 
gene expression levels between the control group and  
the perturbation group using the edgeR package of   
Bioconductor.[14]

Identification of differentially expressed genes

EdgeR package of  Bioconductor was used to identify the 
differentially expressed genes of  the influenza affected 
HTBE dataset. The raw gene counts were normalized 
using the log CPM method (Log Counts Per Million)  
and filtered by selecting the 2500 genes with the most 
variable expression and finally transformed using  
the Z-score method.[15] The transformed genes were 
subjected to Principal Component Analysis and a heat-
map was generated for the normalized and transformed 
gene counts.[16] Volcano plot scaled the significant values 
to fold change. Average gene expression was identified 
by calculating the mean of  the normalized gene expres-
sion values and displayed on the x axis; P-values were 
corrected using the Benjamini-Hochberg method,[17] 

versus fold-change estimated from the differential 
expression analysis on the Y-axis.

Gene ontology Analysis and Functional 
enrichment analysis

Gene Ontology analysis is a unifying attribute to represent  
differentially expressed genes based on their Biological,  
molecular and cellular component functions. The genes 
were screened against the KEGG database and were 
filtered based on the scores for both upregulated and  
down regulated genes.[18] Enrichment results were gener-
ated by analyzing the up-regulated and down-regulated  
gene sets using the libraries of  ENCODE and TargetScan,  
databases. Significant results were determined by using  
a cut-off  of  p-value<0.05 after applying Benjamini-
Hochberg correction.[19] Transcription Factors (TFs) are 
proteins involved in the transcriptional regulation of  
gene expression. Associations between TFs and their 
transcriptional targets that are over-represented in the  
up-regulated and down-regulated genes were identified  
by comparing two groups of  samples and miRNA,  
which play a key role in the post-transcriptional regulation  
of  gene expression.

Construction of host mRNA- miRNA- lncRNA 
network and viral ceRNA network

The miRNA gene targets were identified through  
mirTarBase and Target scan databases. The more  
predominant targets were filtered based on the rank 
and P value < 0.1. The microRNAs associated with the 
regulation of  the differentially expressed genes were 
then identified by entering the list of  filtered genes into 
mirsystem software. The list of  miRNAs along with the  

corresponding genes was obtained. The Corresponding  
long non-coding RNA was identified from the Diana 
Lnc Database.[20] The predicted targets (mRNA), 
miRNA and lncRNA were pooled together and the 
interaction network was created using cytoscape based 
on the interaction scores. The higher nodes and degrees 
of  the interacting network were computed.[21] The viral 
siRNA (v-siRNA) and target genes were identified from 
the ViSiRNA database. The detailed information such 
as the structure, silencing efficacy, viral targets, human 
targets and human 3’ seed match regions about each 
v-siRNA were explored. The viral mRNA, miRNA and 
siRNA were used to construct the ceRNA network in 
cytoscape software.

RESULTS AND DISCUSSION
Differentially expressed genes

The transcript me dataset of  HTBE infected with  
H1N1, H3N2 and H5N1 downloaded from GEO  
database with ID GSE89005 was quantified and the 
meta data was split into two groups control samples 
that were uninfected and perturbation samples that  
were infected with strains of  influenza. The differentially  
expressed genes were selected based on the criterion 
fold change > 2.0, P < 0.05 and FDR < 0.05. There were 
35,238 differentially expressed genes, among which  
24,427 (70.4%) genes were upregulated and the remaining  
10,811 (30.6%) genes were down regulated. Most upreg-
ulated genes were interferon’s, chemokine ligands, anti-
viral host proteins like IFIT and many more. Volcano 
plots are scatter plots that represent the differential  
genes based on Log2FC (fold change), which estab-
lishes a genes expression when in control and during 
infection.[22] The Volcano plots (Figure 1A) with log2FC 
on X-axis and log10P on Y-axis, plotted for influenza 
infected HTBE cells revealed the upregulated (red) and 
down regulated (blue) genes. Heat map of  the dataset 
is represented in Figure 2, in which the top 50 genes 
were filtered based on variance and are clustered based 
on average linkage representing genes that are upregu-
lated during infection and downregulated in the control. 
H5N1 viral infection had significantly over represented 
genes and appears red on the heatmap, while H3N2 and 
H1N1 have less upregulated genes. The genes like zinc 
finger10, IST, BCIL, INF2, etc were upregulated imme-
diately after the infection of  H5N1, whereas they were 
over expressed after 24 hr and 12 hr during H1N1 and 
H3N2 infections respectively. 

Gene Ontology Enrichment Analysis

The experimentally validated and predicted associations 
between various gene attributes enabled the identifica-
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tissue specificity were identified. Table 1 represents the 
TFs of  genes filtered based on p-value less than 0.05 
and suppressed by miRNAs.[25,26]

These transcription factors are all found to activate  
cellular signaling and regulation of  various cellular  
factors at a rapid rate. They are involved in balancing  
the normal cell functions to resume quickly compensating  
the viral cellular functions. These transcription factors 
such as KLF41, STAT1, NFYB, PLAG1, FOXO1 and  
CEBPA were suppressed by miRNAs and are inactivated.  
STAT1. KLF41 and NFYB were significantly over
expressed in H1N1. PLAG1 was upregulated in H3N2 
and FOXO1, CEBP and STAT1 were significantly 
upregulated in H5N7.

Enrichment of human miRNAs targeting host and 
viral genes

The differential gene expression counts data from edgeR 
resulted in the miRNA sequences which were ranked and 
filtered based on p value<0.05 and FDR<0.05. Human 
targets for the miRNA were identified from mirBase 
and Targetscan.[27] The viral-mir-Db (viral miRNA data-
base) and mirtap database maintain the viral targets for 
the host miRNAs. The best 10 human miRNA ranked  
based on the lowest binding energy and site accessibility  
percentage >75 were filtered. Table 2 represents the 
predominant miRNA, their sequence and viral miRNA 
targets from viral-mir-db and mirtap.[28]

Nucleoprotein NP, Polymerase PA, Neuraminidase NA, 
Polymerase PB2, Hemagglutin HA, Matrix protein1 M1, 
Polymerase PB1 were the predominant viral targets that 
were inactivated by the host miRNAs. MiRNAs such 
as hsa-mir-492, hsa-mir-149-5p significantly suppressed 
both the viral and host targets. 

Identification and construction of host ceRNAs

The top seven host miRNAs were filtered based on the 
highest site accessibility percentage above 90%. The 
filtered miRNAs enabled the identification of  valid 
mRNA targets from targetscan and the corresponding 
lncRNAs predicted from the Diana Lncbase. The total 
mRNA-miRNA and lncRNA interaction was plotted 
using the cytoscape and a network representing a higher  
score of  23.54 was constructed using MCODE module  
and is represented in Figure 3A. MiRNAs such as  
hsa-mir-124-3p, hsa-mir-484, hsa-mir-615-3p, hsa-mir-
1-3p, hsa-mir-149-5p, hsa-mir-34a-5p, hsa-mir-324-3p 
were found predominant in suppressing the host genes. 
Long non-coding RNAs such as LINC01410, RP11-
764K9.1, XLOC_011494, LINC01410, CTC-360G5.9, 
RP11-473M20.9, with higher degrees of  interaction to 

tion of  biological processes, molecular functions and 
cellular components for the DEGs. Gene ontology 
(GO) predictions (in Figures 2A and 2B) were screened 
based on -log10P.[23] The biological process of  the host 
genes responsible for negative regulation of  ssRNA viral  
replication were highly upregulated and gene responsible  
for hemidesmosome assembly and skin epidermis 
development was downregulated. Molecular functions 
like GTPase binding and thyrotropin releasing hormone 
receptor genes were upregulated and genes responsible 
for cadherin binding involved in cell adhesion were 
downregulated during infection. Cellular component 
genes that are responsible for Interleukin production 
are upregulated and all the filament formation genes 
were downregulated during viral infection.[24]

Functional Enrichment Analysis

The functional enrichment analysis revealed that there 
were numerous transcription factors (TF) inactivated by 
the miRNAs during the infection. Their function and 

Figure 1A: Volcano plots of upregulated (red) genes and 
downregulated (blue) genes during influenza infection.  

B Heatmap displaying gene expression for each sample in 
the RNA-seq dataset. Rows of the heatmap represent a gene, 
columns represent a sample and cell represents normalized 

gene expression values.

Figure 2: A GO of the upregulated genes B. GO of the  
downregulated genes.
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Table 1: Top 6 Transcription Factors Filtered based on the P-value.
TF PWM OF MOTIFS FUNCTION p-value

KLF41
Kruppel like factor
(Zinc finger family)

Hematopoietic TF. Increases expression of 
adult alpha globin and erythroid genes

0.027944

NFYB
Nuclear Transcription Factor Y – beta 

subunit

Nuclear TF Y subunit regulates transcription 
and protein dimerization

0.017407

PLAG1
Pleomorphic adenoma gene 1 (zinc 

finger protein)

Found on salivary glands of pleomorphic 
adenoma cells.

0.020101

FOXO1
Forkhead box 1

Triggers apoptosis 0.000605

CEBPA
CCAAT/enhancer-binding protein beta

Transcription of other regulatory genes 0.004286

STAT 1
Signal transducer and activator of 

transcription 1

Multiple immune system functions including 
defense

0.01296

Table 2: Identified miRNAs and Targets.

Rank Viral mRNA
Targets miRNA Energy

kJ/mol
Site Accebility 

Percentage
Human mRNA

Targets
1 Nucleoprotein NP

Polymerase PA
Neuraminidase NA
Polymerase PB2
Hemagglutin HA

Matrix protein1 M1
Polymerase PB1

hsa-mir-484* −25.4 97 46 upregulated targets

2 Hsa-mir-615-3p −32.1 96 43 downregulated targets

3

Segment 1
Polymerase PB2

Segment 6
Neuraminidase N1

hsa-mir-1-3p* −31.6 98 44 upwnregulated targets

4 PA- X protein
Hemagglutin HA hsa-mir-149-5p* −24.5 97 24 downregulated targets

5 Polymerase PB2 Hsa-mir-34a-5p −27.8 94 38 downregulated targets

6

Nucleoprotein NP
Polymerase PB1

PA-X
PBI- F2

Hsa-mir-324-3p −26.2 97 30
Downregulated targets

7 Polymerase PB1
Matrix Protein M1 hsa-mir-1296-5p −26.2 82 40 downregulated targets

8 Polymerase PA hsa-mir-933 −25.4 79 39 downregulated targets

9 Polymerase PB2, PA-X hsa-mir-1281 −26.3 80 45 downregulated targets

10
Nucleocapsid Protein

Nucleoprotein
Matrix Protein M1

hsa-mir-492 −26.2 82 65 downregulated targets
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miRNA can be suggested to suppress the miRNAs and 
release the host mRNA for translation.

Identification of viral siRNA and Human targets

Viral siRNAs are predominantly involved in the silencing  
of  host genes. SiViRNA[29] database housed experimen-
tally validated siRNA targets of  Influenza A viruses. 
From the 96 siRNAs reported, the top 20 siRNAs were  
filtered based on the silencing efficacy and identity  
percentage of  the complementary strands. The genes 
for the guide strand and genes for the sense strand were  
filtered based on the high specificity score (>60%)  
corresponding to each siRNAs.[30] The genes with > 4 hits  
matching 3’ seed region of  siRNAs[31] were filtered and 
the results of  top 5 siRNA are tabulated in Table 3. The 
interacting viral siRNAs on viral genes and on the host 
gene is represented as Figure 3B.

Viral siRNAs were capable of  inactivating the viral 
genes themselves. Here we predicted 20 vi-siRNAs 
that had good silencing efficiency and targeted the viral  
genes such as polymerase, nucleoprotein, matrix protein,  
segments -3,5 and 7. VIRSI1538 and VIRSI1540 might 
be significant in targeting the matrix protein of  four 
influenza viruses -H9N2, H2N2, H5N1, H1N1. So 
these two viruses can be claimed as good small RNA 
based therapeutic option for Influenza infection.

DISCUSSION
Generally, viruses either utilize host cellular pathways 
or encode miRNAs to repress host genes. Predicting 
potential viral non-coding RNA would be a valuable tool 
to investigate viral pathology and host interactions.[32,33] 
The target region of  these non-coding RNAs is ‘seed’  
complementarity sequence ranging from 2-8 nucleotides  
from 5’-3’of  miRNA that perfectly complements the 
3’ Un Translated Region of  mRNA.[34] The siRNAs are 
duplex RNA structures that are cleaved into a single 
stranded siRNA upon the activated RISC complex. 
The single strand siRNA acts complementary to guide  
mRNA strands and silences the gene from forming  
proteins. The real havoc is that in some cases, the siRNA  
can act as a miRNA and attach to a limited comple-
mentary mRNA sequences thereby exhibiting off-target 
effects.[35] In the present study, the signature genes of  
influenza infected samples were understood along with 
the underlying miRNA, transcription factors and long 
non coding RNAs. The best results were filtered based 
on the p-value <0.05, False Didscovery Rate (FDR) of  

Table 3: Identification of viral siRNA and host sense strands.

S. NO Si RNA Silencing 
efficacy Virus type Target gene-virus Human mrna-3’ seed matches

1 virsi1534 99 H3N2, H5N1 PA, segment 3 EDA2R, FUT9, MTHFR, C9ORF122

2 VIRSI1658 100 H5N1 NP CAB39, GK5, RBM33, PRR8, HSDL1, ADAMTSL3, 
MCPH1, FUT9, MSR1

3 VIRSI1537 99

H2N2,
H3N2,
H5N1,
H1N1

NP, segment 5 SPANXN1, NTRK2, GABPA, SH3TC2, PGM2L1, 
SPANXN5, PGAP1, ABI2, ARHGAP26

4 VIRSI1538 99 H9N2, H2N2, 
H5N1, H1N1 M, segment 7 PRX, ERGIC1, ZNF69

5 VIRSI1540 99 H9N2, H2N2, 
H5N1, H1N1 M, segment 7

SPIN3, ZNFR1, JRK, KLF13, TOM1, GARNL4, FZR1, 
NF2, SORCS2, NAT9, PPP1R16B, C16ORF28, SH3TC, 

ENTPD1, MCFD2, ZNF445, PDPK1, RANBP10, 
MAPKAPK3, PERLD1, SPN, THSD4, WHSC1, AQP2, 

KLHL21, SLC6A17, PRELP, SLC12A7, LUZP1, PAPLN, 
MTF1, MCART6, KIAA1909, IL16, KNK5, SRGAP3, 

OVOL1, STK24, RXRA, MLLT6, NFAM1, LOC653808, 
AMZ1, KHK, BTBD14B

Figure 3A: Interaction of host ceRNA network and B Network 
of viral siRNA-viral mRNA- host seed RNA.
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<0.05 and Fold change, that is, log2 ratio of  infected to 
control samples.[36]

The genes like zinc finger10, IST, BCIL, INF2, etc were 
upregulated immediately after the infection of  H5N1, 
whereas they were over expressed after 24 hr and 12 
hr during H1N1 and H3N2 infections respectively. The 
gene ontology analysis predicted the upregulation of  
biological, cellular and molecular functions genes as  
regulation of  ssRNA viral replication, Serine type endo-
peptidase activity and calcium ion binding component 
and interleukin receptor complexes respectively. The  
down regulated genes of  biological, cellular and molec-
ular gene functions were identified as hemidesmosome  
assembly, skin epidermis development, cadherin binding  
and filaments production, respectively. The most  
significantly enriched transcription factors were KLF41, 
NFYB, PLAG1, FOXO1, CEBP and STAT1. KLF41 
and NFYB were significantly over expressed in H1N1. 
PLAG1 was upregulated in H3N2 and FOXO1, CEBP 
and STAT1 were significantly upregulated in H5N7. All  
of  these are important components of  normal cellular  
functions. These transcription factors can be valid  
biomarkers for influenza infections.[33] V-siRNAs, were 
explored and also the host target sites, 3’ seed match, 
guide strand, sense strand responsible in the influenza 
infections. V-siRNAs with codes 1534, 1537, 1538, 
1540 have a strong predicted inhibitory efficacy of  99 
% and that of  V-siRNA 1658 is 100%. VIRSI1538 
and VIRSI1540 might be significant in targeting the 
matrix protein of  four influenza viruses -H9N2, H2N2, 
H5N1, H1N1. So these two viruses can be claimed as 
good small RNA based theapeutic option for Influenza 
infection. VIRSI1 658 is specific to H5N1. VIRSI1534 
is specific to H1N1 and H3N2. They are more prone to 
target viral NP, M and PA genes of  all strains.[37] STAT, 
ELF, MAP3K, ZNF are the top genes that are silenced  
by the top v-siRNAs with accurate predictions. The pre-
dominant micro RNAs that were found to be involved 
in the up-regulation and downregulation of  various 
targets were identified as hsa-mir-484, hsa-mir-1-3p, 
hsa-mir-149-5p, hsa-mir-615-3p, hsa-mir-34a-3p and 
hsa-mir-324-3p. Genes that were extremely upregulated 
and downregulated based on the miRNAs were found 
to be responsible for zinc finger proteins, Nuclear tran-
scription factor Y, Interleukins, Forkhead box proteins 
and Ubiquitin ligases. 
The current study has enabled the prediction of  vital 
miRNA sequences that are prevalent during H1N1, 
H5N1 and H3N2 influenza infections. These miRNAs 
can be biomarkers and provide useful insights into the 
pathogenesis of  influenza infections. 

CONCLUSION
There is a balance maintained between complex regu-
latory systems for the normal functioning of  cellular 
and molecular processes. Investigation of  the balance in  
normal physiological conditions and its alteration during  
infection will enable the understanding of  the versatile  
genomic elements.[38] Recent studies have unveiled the  
abundant roles of  non-coding RNAs (ncRNAs) especially 
microRNAs (miRNAs) and long non coding RNAs  
(lncRNAs) involved in a plethora of  biological processes 
affecting cell homeostasis.[39] miRNAs are considered  
post-transcriptional gene regulators enabling transla-
tional repression, mRNA degradation and gene silencing,  
thus playing a major role in gene expression.[40] The 
exact underlying mechanism is still a puzzle to be  
solved. However, extensive studies on these least  
concerned genomic elements will unravel the mystery  
and prove to be therapeutic targets and restorative  
therapy as well in the near future.
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