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ABSTRACT
As an alternative medicine ultra-diluted arsenic is used for problems in the digestive tract, upset 
stomach, sleep disorders, allergies, psoriasis, syphilis, asthma, disorders in the muscles, joints 
and bones, haemorrhoids, cough, pruritus, cancer, and pain. In this study, we are interested in 
observing cytokine expression changes which may help some understanding of the proper use of 
such medicine. Due to a similarity in the expression of alterations in the chemical activity of drug or 
integral transmembrane proteins in the cells on various metabolic pathways, the use of HepG2 cells 
as an experimental model cell line for such study of hepatocytes is well known. Cytopathic Effects 
(CPE), MTT assay, DNA fragmentation, apoptotic gene expressions, and cytokine gene expressions 
caused by ultra-diluted arsenic on HepG2 cells were studied. The cytokine environment of the 
challenged HepG2 cells was delineated by a quantitative Real-Time Polymerase Chain Reaction 
(qRT-PCR) study to observe gene expression changes compared to control gene β-actin. All findings 
indicated a strong apoptotic gene expression change caused by this medicine on HepG2 cells. 
There were rounding of the cells in CPE, non-viable findings in methylene blue staining, cytotoxic 
nature in MTT assay, and DNA-fragmentations indicated gross cellular damage. There was an  
up-regulation of pro-inflammatory cytokines and a down-regulation of anti-inflammatory cytokines 
with increased gene expression of interferon-gamma. In conclusion, ultra-diluted arsenic can 
potentially alter the expression of apoptotic genes and different cytokine genes and also induce 
an apoptotic pathway in the HepG2 cells. 
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INTRODUCTION

Arsenicum album 6CH (ultra-diluted arsenic trioxide, 
As2O3), which contains trace amounts (<1pg/mL) of  
arsenic, the concentration of  As2O3 in Arsenicum album 
6CH (ARS 6CH) formulation is at Attogram level.[1] 

Arsenic element has been in use as a pharmaceutical 
agent from ancient historical times in Chinese and 
Indian traditional medicine.[2-4] As2O3 is made from 
orpiment in an amphoteric oxide form to dissolve in 
alkaline solutions.[5]

The mode of  action of  arsenic trioxide is unclear, and 
there are a number of  scopes and targets. This trivalent 
arsenical binds to vicinal thiol pairs, glutathione or 
some other metabolites in lipoamide and lipoamide 
dehydrogenase, inhibiting energy production in cells and 
induces Reactive Oxygen Species (ROS) production.[6,7]

The lack of  scientific knowledge and no advancement 
in scientific research may have been responsible for 
the disuse of  arsenic-based drugs in the late 1900s. 
The re-emergence of  arsenic in the treatment of  acute 
promyelocytic leukemia shows the importance of  
arsenicals with therapeutic efficacy. Thus, there is a need 
to study the current advances in science development 
of  future arsenical drugs to prove their effectiveness.
Cell lines are similar to primary tissues, can provide a 
high supply of  biomaterials, and avoid ethical problems 
related to the utilization of  human tissues or animal 
sacrifice.[8] Among hepatic cancer cell lines used for 
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the studies of  hepatocellular carcinoma, around 76% 
of  PubMed-indexed manuscripts were written by 
several researchers who have used HepG2 cell line as 
a model.[9,10] This cell line is now gradually upgraded to 
increase cytochrome expressions for the appropriate 
use representing a model cell line of  hepatocytes for 
study in various metabolic pathways.[11] The HepG2 
cell has a cell-diameter in between 12-19 µm, and the 
shape is polygonal. They contain large nuclei with 3-7 
nucleoli. Among different sub-cellular components, 
mitochondrial content is low, and smooth endoplasmic 
reticulum is underdeveloped. They also consist of  50–60 
numbers of  chromosomes and contain 7.5pg genomic 
DNA in each cell.[12-14] HepG2 cell has a maximum 
number of  common gene expression patterns (DLK1, 
DKK1, GPC3, etc.), as compared to other liver cancer 
cells.[15-17]

HepG2 cell lines show differential cytokine profiles 
when exposed to several drugs or stimulatory agents. 
Cytokines initiating the inflammatory reactions include 
Interleukin-1 beta (IL-1β), IL-6, Interferon-gamma 
(IFN-γ), and Tumor Necrosis Factor-alpha (TNF-α) and 
related cytokines like IL-8, induce several acute phase 
protein expressions in the liver cells.[18] Several genetic 
study outcomes on cancer have also suggested that 
IL-6 triggers liver cell proliferation, and regeneration 
of  liver.[19] Besides Kupffer cells, liver cells as well as 
HCC cells could also produce IL-6. Yuan et al. (2011)[20] 
reported recently that HCC cells produce IL-6 induced 
by HBx cell line. Bi et al. (2019)[21] have suggested that 
IL-8 induces the expression of  CXCR1/2 receptors in 
HepG2 cells, which helps in the invasion and metastasis 
of  liver cancer. IL-10 along with Transforming Growth 
Factor β1 (TGF-β1), and TGF-β3 have been shown 
to be the important mediators of  the drug response 
in HepG2 cell lines in vitro and also in rats in vivo this 
gives evidence of  IL-10 regulation by STAT1 pathway 
in HepG2.2.15 cells. The pleiotropic cytokine, IL-10 
was produced by a variety of  immune cells such as 
regulatory treg cells, dendritic cells, macrophages, but 
also by tumor cells and some non-immune cells such as 
keratinocytes and epithelial cells.[22-24] TGF-β1 plays and 
induces complications of  various liver diseases, such 
as fibrosis, cirrhosis, and carcinoma.[25] by promoting 
Treg cell polarization.[26] Caspases are proteases that 
are produced in an inactive form, but during apoptosis, 
those proteases are initiated and regulated. In general, 
caspases are of  two types, effectors (3, 6, and 7) and 
initiators (caspase-8, 9, and 10).[27,28] The present study 
was designed to assess the effects of  ultra-diluted arsenic 
trioxide at the cellular and molecular levels on HepG2 
cell lines and also aimed to find out the association 

between programmed cell death and gene expression of  
several cytokines.

MATERIALS AND METHODS
Human HCC cell line HepG2 cell (93% matched with 
American Type Culture Collection HB-8065), was 
purchased and procured from the National Centre 
for Cell Science, Pune, India. The cells were seeded in 
96-well plates and then cell proliferation was assessed 
by MTT assay adapted from the modified procedure of  
Aird et al. (2008).[29] HepG2 cells were grown in the 5% 
CO2 incubator (ESCO, Singapore).

Cytotoxicity study and MTT assay

Before the 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenylte-
trazolium bromide assay in short ‘MTT assay’, all wells 
were viewed under an inverted microscope to assess the 
confluence of  the cells in order to confirm correlation 
with assay values. The experiment was done on Hep 
G2 cells. Cells with 50% confluence were exposed to 
increasing volumes of  Arsenicum album 6CH (an ultra-
diluted form of  arsenic trioxide, purchased from 
HAPCO, a government-approved manufacturer in 
India) and 70% alcohol (vehicle of  the medicine) for  
1 hr in CO2 incubator (ESCO, Singapore). Then 10 µL  
of  MTT reagent of  ‘EZcountTM MTT Cell Assay 
Kit’ was added in each well and the plate was further 
incubated for 4 hr. The succinate tetrazolium reductase 
system in the mitochondria in viable cells reduced the 
yellow-colored light-sensitive MTT to dark purple 
formazan crystals.[30] Absorbance readings at 570 nm 
show the concentration of  formazan dye produced by 
the viable cells[31] with ELISA reader (Robonic, India).

Experiment for viability and cytokine gene 
expressions

Cells were incubated for 24 hours, and then inoculated 
in 12-well plates, and let to grow overnight. Then the 
cells were exposed to 100µL (significant 50% lethal dose 
obtained from MTT assay) volume of  Arsenicum album 
(6CH) and 70% alcohol (vehicle control) for 24 hr.[31,32]

Methylene blue staining

After the treatment of  HepG2 cells, the growth media 
was removed and each well was washed with Phosphate 
Buffer Solution (PBS). The methylene blue stain was 
prepared with PBS, 1.25% glutaraldehyde, and 0.6% 
methylene blue solution. The cells were then fixed 
and stained with methylene blue for the duration of  
60 min keeping in CO2 incubator at 37°C. Further, the 
methylene blue stain was removed from the wells and 
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washed with PBS twice. After washing the plates were 
viewed under a microscope.

DNA Fragmentation study

The whole genomic DNA was extracted from the 
treated and untreated HepG2 cells with phenol/
chloroform extraction method and the subsequent 
ethanol precipitation protocol.[33,34] To collect all the 
cells from each well cell-scrapper was used. The purified 
DNA was quantified in a UV-visible spectrophotometer 
at an absorption ratio A260/ A280. Then the samples 
were loaded in 1% agarose gel and run under 80 volts. 
The gel was stained further with Syber-green and 
visualized under a UV trans-illuminator.

Conventional-PCR and real-time RT-PCR

For RNA preparation and polymerase chain reaction 
(PCR), the total messenger RNA was extracted from the 
media fluid using the RNA isoplus method from all the 
cultured wells using a cold centrifuge (Universal, India). 
The extracted mRNA was quantified using a UV-visible 
spectrophotometer (Agilent, USA) by the absorbance 
ratio A260/A280. The cDNA was further synthesized 
with the quantified RNA using cDNA synthesis kit 
(iscript Reverse Transcriptase, Bio-Rad, USA) with a 
conventional thermal Polymerase Chain Reactor (PCR) 
(T 100, Bio-Rad, USA). Semi-quantitative genetic 
expression study was carried out of  apoptosis namely 
Caspase3, caspase 9, CD95 and TNFreceptor-1 along 
with eight cytokine genes namely human Interferon-
gamma (IFN-γ); human Interleukins – IL-6, IL-8, 
IL-10, IL-1 β; TGFβ1,TGF-β3, and TNFα with respect 
to human β-actin (taken as control housekeeping gene) 
by their forward and reverse primers. For the RT-PCR 
analysis, the prepared cDNA and the Taq universal 
SYBR Green dye supermix (mixed with forward and 
reverse primers of  each gene) (Bio-Rad, USA) were 
used and analyzed with CFX-96 model (Bio-Rad, USA) 
RT-PCR instrument. The analysis of  relative regulation 
of  gene expression was measured by the comparative Ct 
value method [2-ΔΔCT] as stated by Livak and Schmittgen 
(2001).[35]

Statistical analysis

The samples were studied in triplicates. The one-way 
ANOVA was calculated with respect to the p-value for 
each experiment.

RESULTS
There were significant CPE effects observed under an 
inverted microscope in HepG2 cells treated with ARS 
6CH, 70% alcohol (vehicle control), with respect to 

normal control. Morphological changes were observed 
under an inverted microscope in HepG2 cells treated 
with ARS 6CH, 70% alcohol (vehicle control), with 
respect to normal control. It was observed that the cells 
those are treated with the Arsenic were mostly round in 
shape and the cell size was smaller than the control cells 
[Figure 1 a)]. However, after methylene blue staining 
both medicine-treated cells and vehicle (alcohol) treated 
cells showed the presence of  mainly non-viable cells 
[Figure 1 b)], while normal control cells were mostly 
viable. HepG2 cells are sensitive to the cytotoxic effects 
of  ARS 6CH, and 70% alcohol (vehicle control) with 
respect to normal control. The viability and cytotoxic 
effect of  the ARS 6CH on the HepG2 cells was tested 
in respect of  formazan content of  the HepG2 cells ARS 
6CH, Alcohol (vehicle control) [Figure 1 c)]. The 50% 
lethal doses for both the cell line were at 100µL/mL of  
ARS 6CH treatment, with respect to control.
The broken genome of  the samples treated with ARS 
6CH travelled more in agarose gel electrophoresis in 
respect of  the non-treated control samples. However, 
a very less amount of  DNA was seen as fragmented. 
There was a faded smear of  DNA found in the samples 
that are treated with ALC (vehicle) [Figure 2].

Figure 1: a) CPE effects observed under inverted microscope 
in HepG2 cells treated with ARS 6CH, 70% alcohol (vehicle 

control), with respect to normal control. b) inverted  
microscopic images of HepG2 cells stained with methylene 

blue solution. c) MTT assay result.
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The expression of  Caspase 3gene was up-regulated 
in the HepG2 cells with an increase of  376% in ARS 
6CH treatment but down-regulated in the HepG2 
cells with a decrease of  8% in 70% alcohol treatment 
than the control set [Figure 3 a)]. The expression of  
Caspase 9gene was up-regulated in the HepG2 cells 
with a decrease of  43% in ARS 6CH treatment but 
down-regulated in the HepG2 cells with a decrease 
of  84% in 70% alcohol treatment than the control set  
[Figure 3 b)]. The expression of  the biomarker 
apoptotic genes gene was changed with the treatment 
of  ARS 6CH. The expression of  the biomarker CD95 
gene was changed with the treatment of  ARS 6CH. 
The expression of  CD95gene was down-regulated 
in the HepG2 cells with a decrease of  82% in ARS 
6CH treatment than the control set [Figure 3 c)]. The 
expression of  the TNF receptor gene was up-regulated 
in the HepG2 cells with an increase of  243% in ARS 
6CH treatment but down-regulated in the HepG2 cells 
with a decrease of  34% in 70% alcohol treatment than 
the control set [Figure 3 d)].
The expression of  type II interferon i.e., IFN γgene 
was upregulated in the HepG2 cells with an increase 
of  394% in ARS 6CH treatment, this was 69% down-
regulated in 70% alcohol treatment than the control set 
[Figure 3 e)].
The expression of  IL-6 gene was not markedly changed 
with the treatment of  ARS 6CH. The expression of  IL-6 
gene was changed in the HepG2 cells with an increase 
of  only 20% in ARS 6CH treatment and it is also 25% 
up-regulated in 70% alcohol treatment than the control 
set [Figure 3 f)].
The gene expression of  TGF-β1 was changed with the 
treatment of  ARS 6CH. The expression of  TGF-β1gene 
was down-regulated in the HepG2 cells with a decrease 
of  40% in ARS 6CH treatment than the control set 
[Figure 3 g)]. The gene expression of  TGF-β3 was 

also changed with the treatment of  ARS 6CH. The 
expression of  the TGF-β3 gene was down-regulated 
in the HepG2 cells with a decrease of  50% in ARS 
6CH treatment than the control set but upregulated 
with an increase of  8% in the 70% alcohol treatment  
[Figure 3 h)].
Similar to the IL-6 expression, gene expression of  
IL-8gene was not significantly changed with the 
treatment of  ARS 6CH. The IL-8 gene expression was 
up-regulated in the HepG2 cells with an increase of  
35% in ARS 6CH treatment and 18% up-regulated in 
70% alcohol treatment than the control set [Figure 3 i)]. 
The gene expression of  TNF-α was changed with the 
treatment of  ARS 6CH. The expression of  TNF-α gene 
was down-regulated in the HepG2 cells with an increase 
of  82% in ARS 6CH treatment than the control set 
[Figure 3 j)]. The gene expression of  IL-10 was noticeably 
increased with 70% alcohol. The gene expression of  
IL- 1β was changed with the treatment of  ARS 6CH. 
The expression of  IL- 1β gene was upregulated in the 
HepG2 cells with an increase of  419% in ARS 6CH 
treatment and 358% in 70% alcohol treatment, then the 
control set [Figure 3 k)]. The expression of  IL-10 gene 
was up-regulated in the HepG2 cells with an increase 
of  258% in 70% alcohol treatment than the control 
set. However, it was increased by only 62% with the 
treatment of  ARS 6CH than the control set [Figure 3 l)].

DISCUSSION
In this study, we observed a noticeable Cytopathic 
Effect (CPE) of  ARS 6CH on HepG2 cells indicating 

Figure 2: A clear fragmented DNA was seen in UV  
trans-illuminator with ARS 6CH than control.

Figure 3: Gene expression of a) Caspase 3, b) Caspase 9, 
c) CD95, d) TNF receptorgene, e) IFN γ, f) IL-6, g) TGF-β1, h) 

TGF-β3, i) IL-8, j) TNF α, k) IL-1β, and l) IL-10in the HepG2 cells 
treated with ARS 6CH, alcohol and along with control. The  
differences of the results are significant at p-value < .05.



Singh, et al.: Arsenic Induced Cytokine Changes

Asian Journal of Biological and Life Sciences, Vol 12, Issue 2, May-Aug, 2023 321

rounding of  the cells and decreased size. This was also 
corroborated by the viability of  the cells by methylene 
blue staining where we observed mostly non-viable 
cells. Thus, these two related findings reveal a direct 
killing effect of  this alternative medicine containing an 
extremely trace amount of  arsenic. However, a similar 
cytopathic effect was also seen in the 70% alcohol 
vehicle control. There are many reports that poisons 
may act in an opposite way in their extremely diluted 
forms sometimes showing beneficial effects in our body. 
Previous literatures revealed that within concentration 
1μM to 15μM of  As2O3 solution demonstrated less 
cytotoxicity in the normal liver cell line Human liver 
Normal (Chang liver) when compared to liver cancer 
cell line (Hep 3B).[1] Thus MTT assay showed this 
medicine was singularly cytotoxic to HepG2 cells. DNA 
fragmentation tests also indicated and confirmed the 
same findings. DNA fragmentation study showed proof  
of  the genome damage of  the HepG2 cells by this 
medicine. The equal volume of  vehicle control alcohol 
has a mild effect on the cell viability of  HepG2 cells. 
However, the DNA fragmentation study did not have 
any fragmented DNA with the control.
The HepG2 cells were specifically sensitive to growth 
reduction by ARS 6CH, showing less proliferation at 
24 hours than the control. These results demonstrated 
ARS 6CH inhibited the proliferation of  HepG2 cells 
in vitro. A similar result was obtained by Oketani et al. 
(2002)[36] where As2O3 inhibits the growth of  human 
HCCs cells.
According to Zhang et al.[37] intracellular calcium 
signaling and transduction pathway could be important 
for the occurrence and selectivity of  killing cells in the 
presence of  arsenic. Moreover, Seol et al.[38] have found 
that arsenic trioxide can inhibit the proliferation of  
carcinoma cells of  head and neck cancer, by arresting 
G2/M and reducing the CDC2 kinase activity. In this 
study, the in vitro results revealed that cells became 
apoptotic by Arsenicum album 6CH treatment. Bressenot 
et al. (2009)[39] showed that Caspase-3 facilitates the 
fragmentation of  DNA, cell membrane damage, and 
some other morphological changes to initiate the 
process of  apoptosis. The up-regulated expression 
of  the TNF receptor-1 gene in the HepG2 cells 
corresponds to the production of  the death receptor, 
TNF receptor-1 protein which induced apoptosis via 
the death domain through protein-protein interaction 
in its cytoplasmic part.[40,41] Death domain contains 
the signaling proteins link TNFR1 to trigger cytotoxic 
pathways or necroptosis and also creates signaling that 
activates transcription factors of  the Nuclear Factor - 
kappa B (NF-κB) family or the kinases of  the Mitogen-

Activated Protein Kinase (MAPK) family.[42-44] In most 
type II tumor cells an extrinsic pathway was followed 
where caspase-8 activates caspase-3, which facilitates 
the process of  apoptosis.[45-48]

Basu et al. (2022)[49] showed that Arsenicum album 6C has 
significant apoptotic potential against MCF7 cells. A 
similar result was also found in the experimental study 
of  Roy et al. 2023,[50] where BHK-21 cells were healthy 
up to 30 min by Arsenicum album 6C treatment and after 
30 min the cells became pre-apoptotic to apoptotic. 
Egwuagu et al. (2006)[51] suggested that IFN γ has 
growth-inhibitory effects on tumor cells that induce 
apoptosis. IFN γ up-regulate Caspase-1, p21, and p27 
gene expression and constructs a stable transfection 
with interferon consensus sequence binding protein 
or interferon regulatory factor-1, and further inhibits 
epithelial carcinoma cell growth.[51] The outcome of  
this in vitro study suggests that the application of  ARS 
6CH reduces HepG2 cell proliferation for which IFN 
γ induces antitumor actions could be of  interferon 
consensus sequence binding proteins. Similar results 
were also shown by Bougrini et al. (2006)[52] where, in the 
human fibrosarcoma cell line 2fTGH, As2O3 prolongs 
IFNγ-induced STAT1 phosphorylation that increases 
the expression of  IRF-1 leading to apoptosis.
In this study, we have also looked for the changes in 
different cytokines when cells were challenged with the 
medicine. We noticed up-regulation of  interferon genes, 
up-regulation of  interleukin genes and down-regulation 
of  pro-inflammatory cytokine genes TNF- α.
Cytokine marker IL-6 accelerates the activation of  the 
signaling molecule STAT3 through phosphorylation 
which mediates pro-inflammatory responses.[52] In 
the study of  Karin (2009),[53] he observed an increase 
in IL-6 and STAT3 levels only at 0.01 mg/L dose of  
arsenic in male Swiss albino mice, under laboratory 
conditions. STAT3 is the main intermediate factor of  
IL-6 induction in the liver cells[54] and the Janus Kinases 
(JAKs)pathway may also play as the negative regulator 
by IL-6-induced inflammation by Jak/STAT signaling.[55]  
However, this study result revealed that ARS 6CH 
cannot significantly regulate the IL-6 gene expression 
in HepG2 cells.
Cytokine IL-8 has autocrine as well as paracrine 
impacts on neighboring cells. A number of  cancer cell 
lines increase the IL-8 gene expression, which in turn 
increases the metastasis of  HepG2 cells that induces the 
migration of  adjacent cells.[56-58] The over-expression of  
IL-8 has been linked with activation of  the Extracellular 
Signal-Regulated Kinase 1/2 combined with MAPK 
and JNK through transcription factor c-JUN, and p38 

as well as NF-B activation.[59] Our resulting data suggest 
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that ARS 6CH cannot significantly regulate the IL-8gene 
expression in HepG2 cells.
The counterbalanced role of  IL-10 is involved in cell 
signaling related to an inflammatory state in HepG2 
cells. Boyault et al.[60] have found a noticeably over-
expression of  IL-10 in liver cancer tissues. Therefore, its 
down-regulation in HepG2 cells suggests that it could 
be the inflammatory process specifically related to gene 
alterations in HepG2 cells.[61]

Significantly high IL-1β levels were seen in liver 
diseases[62] related to increased levels of  apolipoprotein 
Bm RNA synthesized by HepG2 cells.[63,64] The 
experimental data of  this study provide evidence that 
IL-1β selectively influences inflammatory response may 
be by the activation of  NF-κB was partly responsible 
through inflammatory protein expression in the HepG2 
cells.[65] Jolanta Jura et al.[66] showed in their work that 
exposure of  HepG2 cells to IL-1βthe mRNA level for 
Endoplasmic Reticulum protein (ERp72) was decreased 
significantly. ERp72 is involved in the formation of  
disulfide bonds and functions as a molecular chaperone 
in the folding and/or assembly of  membrane and 
secretory proteins.[67] Therefore up-regulation of  IL-1β 
gene expression in response to ARS 6CH is responsible 
for apoptotic cell death.[68]

TGF-β1 is over-expressed in liver cancer[69] and it has 
been associated with immune suppression, tumor 
angiogenesis, metastasis, proliferation, development, 
differentiation, and TGF-β1 signalling pathway may 
affect cell growth and apoptosis by regulating the 
proliferating cell nuclear antigen, p115, gankyrin, X-linked 
inhibitor of  apoptosis protein and survivin protein 
expression in liver cancer.[70,71] TGF-β1 also activated 
JAK/STAT3 signaling pathway and induced EMT to 
promote migration and invasion of  HepG2 cells.[72-74] 

Therefore the study result suggests that the effect of  
treatment with ARS 6CH reduces the gene expression 
of  TGF-β1 and has a role as an ameliorative agent that 
reduces the growth and development of  HepG2 cells. 
TGF-β3 regulates immune function and epithelial-
mesenchymal transition.[75] Lee and Nowak[76] suggested 
that alterations in the TGF-β system produce a loss 
of  sensitivity to the anti-proliferative effects of  TGF-
β, and increased expression of  TGF-β3 contributes to 
the growth of  cancer cells. The result of  this study may 
reflect differential kinetics of  the stimulation of  DNA 
replication by TGF-β3 can be altered with ARS 6CH in 
HepG2 cells.
There is evidence in recent studies that TNF-α is a 
central mediator of  chronic inflammation as well as 
malignancies[77-79] and the expression of  TNF-α in 
HCC is higher than that in normal hepatic tissue[80] 

by suppressing G protein-coupled Receptor Kinase 2 
expression. Additionally, the differential regulation of  
relevant receptors can influence the progression of  
HCC metastasis in an autocrine or paracrine manner.[81-83]

Our results demonstrated that ARS 6CH may inhibit 
the hinge of  epithelial-mesenchymal transition EMT 
markers in HepG2 cells (with low expression of  TNF-α).  
IL-8 production induced by TNF-α is important to 
evoke an inflammatory response. Also, the presence of  
fragmented DNA in the cells treated with ARS 6CH is 
significant evidence of  cell apoptosis.[84] Similar results 
are also found in the work of  Shim et al.[85] where ultra-
diluted arsenic trioxide induces apoptosis in leukaemia 
cells of  chronic myelogenous K562. This result also 
revealed that arsenic trioxide induces apoptosis but it 
also up-regulates the cytokine expression like IL8 which 
is responsible for metastasis. 

CONCLUSION
In this study, we explored the possible effect of  ARS 
6CH – an alternative medicine on model cell line 
HepG2. It was found that this medicine effectively kills 
the HepG2 cells when exposed which was confirmed 
by a CPE study, viability study, MTT assay, and 
DNA fragmentation test. On the basis of  this useful 
preliminary study, there is a scope for animal studies 
and clinical trials. The cytokine environment under this 
condition, when the liver cancer cells were challenged 
with the medicine was also observed. Interferon, pro-
inflammatory cytokine was down-regulated while anti-
inflammatory cytokines were up-regulated. Therefore, 
administration of  this drug should be done after 
checking the state of  the patient’s cytokine expression 
details, and whether the patient is suffering from any 
kind of  cancer disease.
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ABBREVIATIONS
CPE: Cytopathic Effects; DNA: Deoxyribonucleic 
Acid; cDNA: Complementary Deoxyribonucleic Acid; 
qRT-PCR: Quantitative Real-Time Polymerase Chain 
Reaction; MTT: 3-(4,5-dimethylthiazol-2-Yl)-2,5-
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diphenyltetrazolium bromide; ROS: Reactive Oxygen 
Species; As2O3: Arsenic Trioxide; IL: Interleukin; IFN: 
Interferon; TNF Tumor: Necrosis Factor; 
HCC: Hepatocellular carcinoma; TGF: Transforming 
Growth Factor; STAT: Signal Transducers and 
Activators of  Transcription; PBS: Phosphate Buffer 
Solution; mRNA: Massanger Ribonucleic Acid; 
ANOVA: Analysis of  Variance; MAPK: Mitogen-
activated protein kinase.

SUMMARY
As an alternative medicine ultra-diluted arsenic is used 
for problems in the digestive tract, upset stomach, sleep 
disorders, allergies, psoriasis, syphilis, asthma, disorders 
in the muscles, joints and bones, haemorrhoids, cough, 
pruritus, cancer, and pain. Arsenicum album 6CH (ultra-
diluted arsenic trioxide, As2O3), which contains trace 
amounts (<1pg/mL) of  arsenic, the concentration of  
As2O3 in Arsenicum album 6CH (ARS 6CH) formulation 
is at Attogram level. For the advancement in the 
research, there is a need to study the current advances in 
the scientific development of  future arsenical drugs to 
prove their effectiveness. In this study, we are interested 
in observing cytokine expression changes which may 
help some understanding of  the proper use of  such 
medicine. Due to a similarity in the expression of  
alterations in the chemical activity of  drug or integral 
transmembrane proteins in the cells on various metabolic 
pathways, the use of  HepG2 cells as an experimental 
model cell line for such study of  hepatocytes is well 
known. Cytopathic Effects (CPE), MTT assay, DNA 
fragmentation, apoptotic gene expressions, and cytokine 
gene expressions caused by ultra-diluted arsenic on 
HepG2 cells were studied. The cytokine environment 
of  the challenged HepG2 cells was delineated by a 
quantitative Real-Time Polymerase Chain Reaction 
(qRT-PCR) study to observe gene expression changes 
compared to control gene β-actin. All findings indicated 
a strong apoptotic gene expression change caused by 
this medicine on HepG2 cells. There were rounding 
of  the cells in CPE, non-viable findings in methylene 
blue staining, cytotoxic nature in MTT assay, and DNA-
fragmentations indicated gross cellular damage. This 
was also corroborated by the viability of  the cells by 
methylene blue staining where we observed mostly 
non-viable cells and DNA fragmentation revealing a 
direct killing effect of  this alternative medicine. TNFR1 
trigger cytotoxic pathways or necroptosis. There was 
an up-regulation of  pro-inflammatory cytokines and a 
down-regulation of  anti-inflammatory cytokines with 
increased gene expression of  IFNγ. As2O3 prolongs 

IFNγ-induced STAT1 phosphorylation that increases 
the expression of  IRF-1 leading to apoptosis. In 
conclusion, ultra-diluted arsenic can potentially alter the 
expression of  apoptotic genes and different cytokine 
genes and also induce an apoptotic pathway in the 
HepG2 cells. 
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