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ABSTRACT
Background: Lung cancer remains one of the leading causes of cancer-related mortality 
globally, necessitating a deeper understanding of its molecular underpinnings. Objectives: This 
study aimed to identify hub genes associated with lung cancer through a systematic analysis 
of existing literature and databases. Materials and Methods: We curated a comprehensive 
Gene Expression Omnibus (GEO) dataset and identified key hub genes linked to lung cancer via 
PubMed resources. To assess the relevance of these hub genes, we conducted Protein-Protein 
Interaction (PPI) analysis through the DAVID database, selecting those with high enrichment 
values. Functional enrichment analysis was performed using DAVID, SHINY GO, and GO NET DICE 
to elucidate the biological processes and pathways associated with the identified hub genes. 
Additionally, we employed ChEMBL, Pharos, and Broad tools to assess druggability, integrating 
chemical, bioactivity, and genomic data. Functional gene partners were grouped to provide a 
clearer understanding of the interaction networks. Results: The genes were then ranked based 
on their involvement in various molecular functions, yielding insights into their potential roles 
in the pathology of lung cancer. Conclusion: This comprehensive analysis underscores critical 
gene interactions and functional pathways, offering promising targets for future research and 
therapeutic intervention in the treatment of lung cancer.
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INTRODUCTION

Lung cancer remains the leading cause of cancer-related deaths 
worldwide, presenting significant challenges in both clinical 
management and research. Non-Small Cell Lung Cancer 
(NSCLC), which accounts for over 80% of lung cancer cases, 
exemplifies the complexity of this disease through its remarkable 
genetic and phenotypic diversity. This heterogeneity, driven 
by both intertumor and intratumor variations, complicates 
diagnosis, treatment planning, and prognosis. While advances in 
genomic technologies-particularly Single-Cell RNA sequencing 
(scRNA-seq)-have revolutionized our understanding of tumor 
biology, they also highlight the ongoing challenges of precision 
medicine in the context of NSCLC. These insights offer 
opportunities to improve treatment outcomes, but also underline 
the need for continued research and innovation in therapeutic 
strategies.[1]

NSCLC is characterized by considerable heterogeneity at both the 
intertumor and intratumor levels. Intertumor heterogeneity refers 

to the differences observed between tumors of the same histological 
type in different patients, while intratumor heterogeneity involves 
the genetic and phenotypic variability within a single tumor. 
These variations are driven by the genetic evolution of the tumor, 
which is influenced by factors such as mutation accumulation, 
environmental exposures (e.g., smoking), and therapeutic 
pressures. Intratumor heterogeneity is particularly concerning, as 
it means that within one tumor, different subclones of cancer cells 
may harbor distinct mutations, leading to differential responses 
to treatments. For instance, subclones with specific mutations 
might be resistant to chemotherapy or targeted therapies, while 
others remain sensitive. These diverse subpopulations of cancer 
cells complicate treatment planning, as tumors may evolve 
under treatment pressure, leading to drug resistance or disease 
progression. Personalized medicine, in which treatment is tailored 
to the specific genetic profile of an individual’s tumor, is crucial 
for overcoming these challenges. To further complicate matters, 
tumor evolution is not static, and tumors often acquire new 
mutations over time. This necessitates continuous monitoring of 
tumor evolution and frequent adjustments in treatment regimens 
to maintain therapeutic efficacy.[2]

The Tumor Microenvironment (TME) plays a crucial role in 
tumor progression, metastasis, and response to treatment. TME is 
a complex, dynamic environment consisting of a variety of cellular 
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and extracellular components, including fibroblasts, immune 
cells, endothelial cells, and Extracellular Matrix (ECM) proteins. 
These components interact with tumor cells, influencing their 
behavior, survival, and ability to resist treatment. One of the most 
important cellular players in the TME is the Cancer-Associated 
Fibroblast (CAF), which actively contributes to ECM 
remodeling, tumor growth, and metastasis. CAFs also facilitate 
angiogenesis, thereby supporting tumor vascularization and 
enabling tumor cells to access nutrients and oxygen. Moreover, 
fibroblasts and stromal cells interact with cancer cells to create 
a tumor niche that promotes cancer cell proliferation, survival, 
and invasion, making CAFs an important target for therapeutic 
strategies. Macrophages are often polarized into two distinct 
types: pro-inflammatory M1 macrophages, which can inhibit 
tumor growth, and anti-inflammatory M2 macrophages, which 
support tumor progression. The balance between these different 
macrophage subtypes plays a significant role in regulating tumor 
progression. Similarly, the role of neutrophils in the TME is 
complex-they can either inhibit or promote tumor progression 
depending on their activation state, complicating their role in 
cancer therapy. Understanding these complex interactions within 
the TME is essential for developing strategies that can manipulate 
the TME to enhance the efficacy of treatment.

Technological advancements, such as single-cell RNA sequencing 
(scRNA-seq), have greatly enhanced our understanding of 
the cellular composition of tumors and the TME. scRNA-seq 
allows for the detailed examination of gene expression profiles 
at the individual cell level, revealing previously unrecognized 
cellular heterogeneity within both tumor cells and stromal 
components. Through this technology, researchers can identify 
distinct tumor subpopulations, map cellular interactions, and 
uncover Differentially Expressed Genes (DEGs) that might serve 
as potential biomarkers for diagnosis or therapeutic targets. For 
example, scRNA-seq has been used to identify novel subclones 
within tumors that were previously undetectable through bulk 
sequencing techniques, enabling a more comprehensive view of 
tumor evolution and resistance mechanisms. This technology is 
paving the way for personalized treatment strategies, as it enables 
clinicians to design more targeted therapies based on the unique 
molecular profile of a patient’s tumor. Additionally, scRNA-seq 
offers the potential for early detection of therapeutic resistance 
and real-time monitoring of tumor dynamics, helping clinicians 
to adapt treatment strategies as tumors evolve.[3,4]

Despite significant advances in our understanding of NSCLC, 
there remain several critical challenges in its treatment. One of 
the major hurdles is variable responses to immunotherapy and 
the absence of reliable biomarkers to predict which patients 
will benefit from such treatments. For instance, while Immune 
Checkpoint Inhibitors (ICIs) like PD-1/PD-L1 blockers have 
shown promise, only a subset of patients responds to these 
therapies, and many develop resistance over time. Identifying 

biomarkers to predict patient response to ICIs would significantly 
improve treatment outcomes and avoid unnecessary side effects 
for non-responders. Furthermore, treatment resistance, especially 
to targeted therapies, remains a persistent issue. As tumor cells 
acquire new mutations, they may bypass the effects of targeted 
therapies, requiring novel strategies to overcome or prevent 
resistance.

Another emerging area of research is the role of microbiomes 
in cancer progression and treatment response. Recent studies 
suggest that the microbiota-consisting of diverse bacterial 
populations in the body-can influence tumor behavior and 
the effectiveness of treatments. Microbial composition may 
modulate immune responses or affect the metabolism of drugs, 
suggesting that the microbiome could be leveraged to improve 
treatment efficacy. Understanding these interactions between 
the microbiome and the tumor could lead to novel strategies for 
optimizing cancer therapy. The complexity of NSCLC, driven 
by both tumor heterogeneity and the dynamic TME, poses 
significant challenges for treatment. Advances in technologies 
like scRNA-seq have enhanced our understanding of tumor 
biology, offering new insights into cellular diversity and tumor 
evolution. These tools enable more personalized approaches to 
treatment but also highlight the need for continued research into 
mechanisms of resistance, predictive biomarkers, and the impact 
of the microbiome. As our understanding of the molecular and 
cellular landscape of NSCLC deepens, it holds the promise of 
improving patient outcomes and informing the development 
of novel therapeutic strategies. A comprehensive approach that 
integrates genomic technologies, a better understanding of the 
TME, and personalized medicine will be key to addressing the 
complex challenges of NSCLC.[5] This study aims to provide a 
foundation for developing potential diagnostic markers and 
therapeutic targets for lung cancer.

MATERIALS AND METHODS

The immune lung cancer related 20 HUB genes were selected from 
Gene Expression Omnibus (GEO) datasets and their descriptions. 
These genes were experimentally proven to be involved in the 
pathogenesis of immune lung cancer and extensively analysed 
using bioinformatics tools, gene set enrichment analysis, 
etc., Identification of crucial HUB genes as effective protein 
targets from this list of HUB genes are further analysed using 
bioinformatics approaches. Our approach involved ranking of 
HUB genes through PPI analysis and functional enrichment 
across different GO databases and identifying crucial HUB genes 
through number of functional involvements.

PPI analysis using Stringbase

Stringbase version 11.5 is an open-source web based database 
available through www.string-db.org. It depicts functional 
association between two proteins jointly contributing to a 



Asian Journal of Biological and Life Sciences, Vol 14, Issue 2, May-Aug, 2025 3

 Anbuselvi and Saranya.: Hub Genes and Therapeutic Targets in Lung Cancer

specific function with PPI interaction score values. It predicts 
protein-protein interactions scores through computational 
analysis from interactions aggregated from other (primary) 
databases and experimental results of genomic content 
predictions, high-throughput lab experiments, conserved 
co-expressions, automated text mining etc. In string base, the 
edges are representation between two interacting nodal proteins 
as predicted edges derived based on experimental evidence and 
protein associations from 12 different biological data sources. 20 
hub genes associated with lung cancer were used as keywords 
and node to node interaction data were saved into excel sheet by 
downloading tabular text outputs.[6]

Functional Enrichment Analysis using DAVID

The Database for Annotation, Visualization and Integrated 
Discovery (DAVID) is available as open source through https://
david.ncifcrf.gov/home.jsp. It is developed as a functional 
annotation tool for using a large set of genes. It retrieves data 
by listing functional enriched related genes from BioCarta 
and KEGG pathway maps, linking gene-disease associations, 
highlighting functional domains and motifs etc., 20 hub genes 
associated with lung cancer were used as gene lists in DAVID 
search by converting the gene list using DAVID gene ID converter 
tool and data downloaded in MS-Excel for molecular functional 
clustering and enrichment analysis.[7]

Functional enrichment analysis and grouping of 
functional gene partners using ShinyGO

ShinyGO version 0.76 is an open source web based GO tool 
used for high level functional enrichment available through 
http://bioinformatics.sdstate.edu/go/ which produces protein 
interaction network visualizations, clustering trees, pathways 
etc. based on annotation from Ensembl. The number of folds 
in functional enrichments with number of genes involved 
with False Discovery Rate (FDR) values can be graphically 
represented. Further, the categorization of numbers and groups 
of genes involved in high level molecular functional enrichment 
are represented in tabular format downloadable directly from 
the database. The correlation of significant functional pathway 
enrichment is represented through hierarchical tree clustering 
and results were downloaded in PNG format from database.[8]

Functional enrichment analysis and grouping of 
functional gene partners using GoNET DICE

The DICE (Database of Immune Cell Expression) is freely 
available web source at http://tools.dice-database.org/GOnet/. It 
can perform analysis of GO term annotation or gene enrichment 
analysis by taking a list or set of human genes. It can depict 
functionally interconnected user-friendly network of submitted 
set of gene list.[9]

Ranking of HUB genes and functional enrichment 
analysis

The data from DAVID, ShinyGo and GONET were comparable 
based on the involvement of the genes in various functions. 
Based on the commonality of functions, the different genes were 
grouped, and ranking reveals the influence of a single protein in 
various functions.

ChEMBL

ChEMBL is an open-source database https://www.ebi.ac.uk/
chembl/ that serves as a manually curated resource of bioactive 
molecules, particularly focusing on drug-like small molecules. 
It contains 2-D structures, calculated properties (such as logP, 
molecular weight, and Lipinski parameters), and abstracted 
bioactivity data (including binding constants, pharmacology, and 
ADMET profiles). This search yields over 10 targets related to 
the entered gene. By clicking on the full form of the gene, users 
can access detailed information, including ligand efficiencies, 
approved drugs, and clinical candidates associated with those 
targets. This functionality enhances the ability to identify 
potential therapeutic avenues for lung cancer based on molecular 
interactions and drug development status.[10]

PHAROS

Pharos is the user interface for the Knowledge Management 
Center (KMC), part of theIlluminating the Druggable 
Genome (IDG) program funded by the NIH Common Fund 
(Grant No.1U24CA224370-01). The KMC aims to create a 
comprehensive knowledge base for the Druggable Genome 
(DG), focusing on poorly characterized or unannotated regions. 
It specifically emphasizes three commonly drug-targeted 
protein classes: G-Protein-Coupled Receptors (GPCRs), Ion 
Channels (ICs), and kinases. This feature enhances the ability to 
identify potential therapeutic targets and their associated drug 
development status for lung cancer.[11]

BROAD

CLUE is a cloud-based software platform designed for the analysis 
of perturbational datasets generated from gene expression 
(L1000) and proteomic (P100 and GCP) assays. The current 
DATA VERSION: Beta and theSOFTWARE VERSION: 1.1.1.43. 
Recent technological advancements have dramatically increased 
the availability of high-dimensional perturbational datasets to 
the biomedical community. This user-friendly interface facilitates 
easy access to relevant datasets, empowering researchers to derive 
insights and formulate hypotheses related to lung cancer.

RESULTS AND DISCUSSION

The gene clustering analysis of 147 HUB genes in DAVID were 
used in identifying functional enrichments. We found 107 genes 
in DAVID database and found 37 genes involved in various 
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functions, out of which we selected top 20 genes for further 
studies. We found 8 clusters and 107 GO terms in DAVID and 
selected 20 HUB genes and found 9 functionally enriched GO 
terms with different gene clusters associated with Extracellular, 
cell membrane, disulfide bond and cytoplasmic receptor binding 
activities (Table 1). String base exhibited 118 multiple edges with 
20 multiple nodes to node interactions in which most of the 
GO terms in network clusters were found associated with C-C 
Chemokine receptor activity and binding, and T cell receptor 
binding as shown in Figure 1. Local network clustering found 20 
HUB genes described under 15 different GO terms were found, 
in which maximum nodal interaction with highest number of 

functional enrichments were associated with Chemokine receptor 
binding. Each different terms contained a group of 2-16 genes 
involving in Signaling receptor activity, MHC protein binding, 
Protein binding and T cell receptor binding are shown in Table 2.

These 9 different categories of GO terms were reportedly enriched 
with 5-9 genes in each group contributing functional descriptions 
and were reported through KEGG pathways whose details are 
shown in Table 2. The signalling pathways in SHINY GO contains 
the functional network relationships of top ranked 20 genes were 
described under 20 GO terms involving various protein binding 
and metabolic receptors in Figure 2.

Sl. 
No.

Term Genes Fold Enrichment FDR

1 TOPO_DOM:Extracellular MRC1, CD84, CXCR4, TIGIT, LAG3, 
IL2RA, CCR7, CXCR2, CD74, CD79A, 
CXCR1, CD19, CD79B, SELL, CD79B, 
CD8A, CD3D, CD3E, CD3G

6.530932 2.27E-12

2 TOPO_DOM:Cytoplasmic MRC1, CD84, CXCR4, TIGIT, LAG3, 
IL2RA, CCR7, CXCR2, CD74, CD79A, 
CXCR1, CD19, CD79B, SELL, CD79B, 
CD8A, CD3D, CD3E, CD3G

5.009113 1.29E-10

3 KW-1003~Cell membrane MRC1, CD84, CXCR4, TIGIT, LAG3, 
CCR7, CXCR2, CD74, CD79A, CXCR1, 
CD19, CD79B, SELL, CD79B, CD8A, 
CD3D, CD3E, CD3G

3.988096 1.06E-08

4 KW-1015~Disulfide bond MRC1, CD84, CXCR4, VCAN, TIGIT, 
LAG3, IL2RA, CCR7, CXCR2, CD74, 
CD79A, CXCR1, CD19, CD79B, SELL, 
CD79B, CD8A, CD3D, CD3E, CD3G

3.648746 2.02E-10

5 TRANSMEM:Helical MRC1, CD84, CXCR4, TIGIT, LAG3, 
IL2RA, CCR7, CXCR2, CD74, CD79A, 
CXCR1, CD19, CD79B, SELL, CD79B, 
CD8A, CD3D, CD3E, CD3G

3.588055 1.93CD79A577544735E-08

6 GO:0005886~plasma 
membrane

MRC1, CD84, CXCR4, TIGIT, LAG3, 
IL2RA, CCR7, CXCR2, CD74, CD79A, 
CXCR1, CD19, CD79B, SELL, CD79B, 
CD8A, CD3D, CD3E, CD3G

3.548399 1.95E-08

7 KW-1133~Transmembrane 
helix

MRC1, CD84, CXCR4, TIGIT, LAG3, 
IL2RA, CCR7, CXCR2, CD74, CD79A, 
CXCR1, CD19, CD79B, SELL, CD79B, 
CD8A, CD3D, CD3E, CD3G

2.357557 1.80E-06

8 KW-0812~Transmembrane MRC1, CD84, CXCR4, TIGIT, LAG3, 
IL2RA, CCR7, CXCR2, CD74, CD79A, 
CXCR1, CD19, CD79B, SELL, CD79B, 
CD8A, CD3D, CD3E, CD3G

2.334144 1.80E-06

9 KW-0472~Membrane MRC1, CD84, CXCR4, TIGIT, LAG3, 
IL2RA, CCR7, CXCR2, CD74, CD79A, 
CXCR1, CD19, CD79B, SELL, CD79B, 
CD8A, CD3D, CD3E, CD3G

2.043753 5.41E-05

Table 1: Functional enrichment analysis of 147 lung cancer genes in DAVID. A total of 9 gene clusters under different Gene Ontology terms were 
shown with functional fold enrichment.
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Sl. 
No.

Description GENES

1 Signaling receptor activity CD74,LAG3,CD79A,CCR7,CXCR1,CXCR2,CD3E,CD2,I
L2RA,CD79B,CD8A,CXCR4,CD3G,MRC1

2 Transmembrane signaling receptor activity CD74,LAG3,CD79A,CCR7,CXCR1,CXCR2,CD3E,IL2RA
,CD79B,CXCR4,CD3G,MRC1

3 Cytokine receptor activity CD74,CCR7,CXCR1,CXCR2,IL2RA,CXCR4
4 Cytokine binding CD74,CCR7,CXCR1,CXCR2,IL2RA,CXCR4
5 C-C chemokine receptor activity CCR7,CXCR1,CXCR2,CXCR4
6 C-C chemokine binding CCR7,CXCR1,CXCR2,CXCR4
7 C-X-C chemokine receptor activity CXCR1,CXCR2,CXCR4
8 interleukin-8 receptor activity CXCR1,CXCR2
9 MHC protein binding CD74,LAG3,CD8A
10 interleukin-8 binding CXCR1,CXCR2
11 Protein binding CD74,LAG3,CD79A,SELL,CCR7,CXCR1,CD84,CXCR2,

CD3E,CD2,IL2RA,CD79B,CD8A,CXCR4,TIGIT,CD3G
12 MHC class II protein binding CD74,LAG3
13 Identical protein binding CD74,CD79A,CD84,CD3E,CD2,CD79B,CXCR4,TIGIT,

CD3G
14 T cell receptor binding CD3E,CD3G
15 MHC protein complex binding CD74,CD8A

Table 2:  Top ranked 20 HUB genes and their related GO terms in KEGG network clusters in String base.

We tested functional enrichment of 20 HUB genes in Shiny 
GO, which were shown in Table 3. The functional pathways 
of top ranked 20 HUB genes in SHINY GO 6 different group 
of genes (each group 1-6 genes) with a maximum of 200% 
functional enrichments in C-C Chemokine receptor activity, G 

protein coupled chemo attractant receptor activity. carbohydrate 
metabolisms, T cell receptor binding and C-C Chemokine 
binding. The process of C-C Chemokine receptor activity 
exhibited highest functional fold enrichments (>200%) genes were 
found. 1-6 gene clusters were found with 50-200-fold functional 

Figure 1:  PPI interactions of top 20 HUB Genes interacting proteins in stringbase. Number of Nodes : 20, 
Number of Edges : 118, Average Node Degree:11.8, Avg. Local Clustering Coefficient : 0.777, Expected Number 

of Edges : 12, PPI Enrichment p-value : < 1.0e-16.
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Sl. No. Pathway Genes Fold Enrichment Enrichment FDR
1 GO:0016493 C-C chemokine receptor activity CXCR4 CCR7 CXCR1 

CXCR2
198.9652 5.22E-08

2 GO:0019957 C-C chemokine binding CXCR4 CCR7 CXCR1 
CXCR2

190.675 5.22E-08

3 GO:0001637 G protein-coupled chemoattractant 
receptor activity

CXCR4 CCR7 CXCR1 
CXCR2

176.0077 5.71E-08

4 GO:0004950 chemokine receptor activity CXCR4 CCR7 CXCR1 
CXCR2

176.0077 5.71E-08

5 GO:0019956 chemokine binding CXCR4 CCR7 CXCR1 
CXCR2

138.6727 1.40E-07

6 GO:0042608 T cell receptor binding CD3G CD3E 99.48261 0.000745
7 GO:0050998 nitric-oxide synthase binding CD74 88.00385 0.025754
8 GO:0070492 oligosaccharide binding SELL 76.27 0.028889
9 GO:0004896 cytokine receptor activity CD74 CXCR4 CCR7 

CXCR1 CXCR2 IL2RA
67.29706 5.11E-09

10 GO:0005537 mannose binding MRC1 49.7413 0.041886
11 GO:0030021 extracellular matrix structural 

constituent conferring compression re
VCAN 49.7413 0.041886

12 GO:0030159 signaling receptor complex adaptor 
activity

CD3G CD3E 44.86471 0.003343

13 GO:0015026 coreceptor activity CD8A CXCR4 44.00192 0.003343
14 GO:0019955 cytokine binding CD74 CXCR4 CCR7 

IL2RA CXCR1 CXCR2
42.11227 5.22E-08

15 GO:0046625 sphingolipid binding SELL 39.45 0.048919
16 GO:0051861 glycolipid binding SELL 39.45 0.048919
17 GO:0005540 hyaluronic acid binding VCAN 38.135 0.049408
18 GO:0042287 MHC protein binding CD74 LAG3 CD8A 34.66818 0.000366
19 GO:0008528 G protein-coupled peptide receptor 

activity
CXCR4 CCR7 CXCR1 
CXCR2

29.33462 5.24E-05

20 GO:0001653 peptide receptor activity CXCR4 CCR7 CXCR1 
CXCR2

28.24815 5.24E-05

Table 3:  Functional Enrichment Analysis of the top 20 HUB genes interacting proteins in Shiny GO.

enrichment in C-C Chemokine receptor binding, T Cell receptor 
binding, Nitric oxide synthase binding, Oligosaccharide binding, 
Mannose binding and Sphingolipid binding. More than 10 HUB 
were reported with 50-fold functional enrichment in pathways of 
cancers. In Shiny GO hierarchical clustering tree summarizing 
the 15 GO Term clusters in which bigger dots indicate more 
significant P value were shown in Figure 2.

In GO Net dice, out of 20 HUB genes we found 17 HUB genes 
which are involved in transmebrane signaling receptor activity, 
cytokine receptor activity and signalling receptor activity Figure 
3. Based on PPI analysis and functional enrichment results 
across these GO databases, we ranked these genes and shortlisted 
20 HUB genes based on their total number of functional 
involvements and their related functions with references shown 
in Table 4. Out of these 20 HUB genes 15 HUB genes are approved 

for drugs in which CXCR4 gene is approved in all three databases 
(chEMBL, Pharos and Broad) in both Active ligands/Comounds 
and Clinical trial phase. CXCR4, CD2, CD74, LAG3, IL2RA and 
SELL genes have drugable property to cure lung cancer disease as 
shown in Table 5.

Bioinformatics tools and web-based Gene Ontology (GO) 
databases have revolutionized the identification and validation of 
potential therapeutic targets for complex diseases such as Immune 
Lung Cancer (ILC). In our study, the integration of GO databases 
and Protein-Protein Interaction (PPI) networks was pivotal in 
elucidating the functional roles of immune-related genes and 
identifying key therapeutic targets. Functional network analysis, 
utilizing platforms like ShinyGO, DAVID, and GoNet, allowed 
us to systematically categorize and rank genes based on their 
involvement in various biological processes and pathways. This 
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Sl. No. Genes DAVID Rank Genes GO NET Rank Genes SHINY GO Rank

1 CXCR4 9 CXCR2 15 CXCR4 10

2 LAG3 9 CXCR1 15 CXCR1 9

3 CD84 9 CXCR4 13 CXCR2 9

4 CD74 9 CD74 12 CCR7 9

5 CD3G 9 CCR7 12 CD74 4

6 CD3E 9 CD3G 6 SELL 3

7 CD3D 9 CD3E 6 CD3G 2

8 CD2 9 LAG3 5 CD3E 2

9 CD79B 9 IL2RA 5 IL2RA 2

10 CD79A 9 CD79B 5 CD8A 2

11 CXCR1 9 CD79A 5 VCAN 2

12 SELL 9 CD3D 5 LAG3 1

13 CD8A 9 CD2 4 MRC1 1

14 CD19 9 MRC1 3 CD3D

15 CXCR2 9 CD8A 3 CD79B

16 CCR7 9 TIGIT 1 CD79A

17 MRC1 9 CD84 1 CD2

18 TIGIT 9 VCAN CD84

19 IL2RA 8 SELL TIGIT

20 VCAN 1 CD19 CD19

Table 4:  Ranking of the top-ranked HUB Genes based on their involvement in the total number of functions.

Figure 2:  (a) hierarchical clustering tree summarizing the correlation among significant pathways of top 20 HUB genes interaction in ShinyGO. 
Pathways with many shared genes were clustered together. Bigger dots indicate more significant P-values. (b): The signaling pathways and their 

networks of functional relationships among the 20 top ranked genes in shiny go.
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Sl. 
No.

Gene 
Name

Functions of Hub 
Genes

chEMBL Pharos Broad

Active 
ligands

Clinical 
trail phase

Active 
ligands

Clinical 
trail phase

Active 
ligands

Clinical 
trail phase

1 CXCR4 Involved in chemokine 
receptor

YES YES YES YES YES YES

2 CD2 Involved in T cell surface 
antigen

YES YES YES YES NIL NIL

3 CD74 Involved in HLA class II 
histocompatibility 
antigen

YES YES YES NIL NIL NIL

4 LAG3 Involved in lymphocyte 
activation

YES YES NIL YES NIL NIL

5 IL2RA Involved in interleukin 2 
receptor

YES YES NIL YES NIL NIL

6 SELL Involved in L selectin NIL YES YES NIL YES NIL

7 CD3E Involved in T cell surface 
glycoprotein

NIL YES NIL YES NIL NIL

8 CD3G Involved in T cell surface 
glycoprotein

NIL YES NIL YES NIL NIL

9 CD19 Involved in B 
lymphocyte antigen

NIL YES NIL YES NIL NIL

10 CXCR2 Involved in chemokine 
receptor

NIL NIL YES NIL YES NIL

11 CD79B Involved in B cell antigen 
receptor

NIL YES NIL YES NIL NIL

12 CCR7 Involved in chemokine 
receptor

YES NIL YES NIL NIL NIL

13 CXCR1 Involved in chemokine 
receptor

NIL NIL YES YES NIL NIL

14 CD3D Involved in T cell surface 
glycoprotein

NIL NIL NIL YES NIL NIL

15 TIGIT Involved in T cell 
immunoreceptor

NIL YES NIL NIL NIL NIL

16 MRC1 Involved in macrophage 
mannose receptor

NIL NIL NIL NIL NIL NIL

17 CD8A Involved in T cell 
glycoprotein

NIL NIL NIL NIL NIL NIL

18 VCAN Involved in versican core 
protein

NIL NIL NIL NIL NIL NIL

19 CD84 Involved in SLAM family 
member

NIL NIL NIL NIL NIL NIL

20 CD79A Involved in B cell antigen 
receptor

NIL NIL NIL NIL NIL NIL

Table 5:  List of 20 HUB gene interacting drugs are analysis in chEMBL, Pharos and Broad databases to cure the immune lung cancer disease.
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approach provided a comprehensive overview of gene function 
and interaction, leading to the identification of a top-ranked 
group of 20 genes with significant roles in ILC. By leveraging 
these bioinformatics resources, we were able to identify critical 
hub genes that are integral to the disease process and could serve 
as potential targets for novel therapeutic interventions.[12]

The chemokine receptors CXCR4, CXCR2, and CCR7 emerged as 
pivotal players in the context of ILC. These receptors are integral to 
various processes within the tumor microenvironment, including 
immune cell trafficking, angiogenesis, and metastasis. This 
receptor is well-documented for its role in cancer progression, 
particularly in lung and breast cancers. CXCR4 mediates the 
recruitment of cancer cells to metastatic sites and is associated with 
poor prognosis. Our findings support the CXCR2 is implicated 
in enhancing tumor growth and facilitating metastasis. Targeting 
CXCR2 could potentially disrupt the recruitment of immune 
cells to the tumor microenvironment, thereby impeding cancer 
progression and improving patient outcomes. CCR7 is crucial for 
lymphocyte trafficking and the formation of secondary lymphoid 
organs. Its involvement in tumor-related immune responses 
suggests that targeting CCR7 could influence the localization and 
activity of immune cells within the tumor microenvironment, 
potentially modulating the immune response and impacting 
tumor progression.[13]

Our study identified several immune-related hub genes with 
significant therapeutic implications. These genes play crucial 
roles in T-cell activation, cytokine signaling, and immune cell 
migration, making them potential targets for immunotherapy. 
CD2, CD3G, CD3E, and CD8A genes are integral components 
of the T-cell receptor complex, essential for T-cell activation and 

cytotoxic responses. Their upregulation in ILC underscores their 
involvement in modulating immune responses against tumors. 
Targeting these components could enhance T-cell activation and 
improve the efficacy of immunotherapeutic approaches.[14]

The findings from our study have significant clinical implications 
for the treatment of ILC. Identifying key genes involved in 
immune-related processes provides a foundation for developing 
targeted therapies and novel immunotherapeutic strategies. 
The potential of combining immune checkpoint inhibitors 
with targeted agents highlights the importance of personalized 
treatment strategies. By integrating biomarker data into clinical 
practice, we can optimize treatment regimens and improve 
patient outcomes. Future research should focus on validating 
the key genes identified in this study through experimental and 
clinical studies.

Our study highlights the critical role of functional network 
analysis and bioinformatics in identifying key genes involved in 
immune lung cancer. The identification of crucial genes, including 
CXCR4, CXCR2, CCR7, CD2, CD3G, CD3E, CD8A, SELL, LAG3, 
TIGIT, IL2RA, CD79A, and CD79B, provides a foundation for 
developing targeted therapies and novel immunotherapeutic 
strategies. Integrating bioinformatics approaches with clinical 
research is essential for advancing our understanding and 
treatment of complex diseases like immune lung cancer.[15-17]

The development of new immune checkpoint inhibitors and 
combination therapies holds promise for improving treatment 
outcomes and personalizing therapy.[18,19] By leveraging 
bioinformatics tools and web-based databases, we can uncover 
novel therapeutic targets and advance treatment strategies, paving 
the way for more effective and personalized therapies for immune 
lung cancer and beyond.[20,21] Future research will be crucial in 
validating these findings and exploring their full potential in 
clinical settings, ultimately leading to improved patient outcomes 
and enhanced therapeutic options.[22]

CONCLUSION

In conclusion, this study identifies key hub genes associated with 
lung cancer through a comprehensive integration of genomic data 
and literature. By analyzing datasets from the Gene Expression 
Omnibus, we elucidated critical protein-protein interactions and 
functional pathways relevant to the disease. We highlighted 20 
top-ranked HUB genes, in which 15 HUB genes identified as 
promising candidates for diagnostic markers and therapeutic 
targets. This research not only enhances our understanding 
but also lays the groundwork for future investigations aimed at 
developing more effective treatment strategies.
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Figure 3:  GO NET was used with top ranked 20 HUB genes and interactive 
network graph was derived. Functional network for 3 genes VCAN, CD19 and 

SELL were not described in GO NET DICE.



Asian Journal of Biological and Life Sciences, Vol 14, Issue 2, May-Aug, 202510

 Anbuselvi and Saranya.: Hub Genes and Therapeutic Targets in Lung Cancer

ABBREVIATIONS

NSCLC: Non-Small Cell Lung Cancer; scRNA-seq: single-cell 
RNA sequencing; TME: Tumor Microenvironment; ECM: 
Extracellular Matrix; CAF: Cancer-Associated Fibroblast; DEGs: 
Differentially Expressed Genes; ICIs: Immune Checkpoint 
Inhibitors; PD-1: Programmed Death-1; PD-L1: Programmed 
Death-Ligand 1; GEO: Gene Expression Omnibus; PPI: 
Protein-Protein Interaction; DAVID: Database for Annotation, 
Visualization and Integrated Discovery; GO: Gene Ontology; 
KEGG: Kyoto Encyclopedia of Genes and Genomes; FDR: False 
Discovery Rate; DICE: Database of Immune Cell Expression; 
ChEMBL: Chemical Database of the European Molecular 
Biology Laboratory; IDG: Illuminating the Druggable Genome; 
KMC: Knowledge Management Center; NIH: National Institutes 
of Health; GPCRs: G-Protein-Coupled Receptors; ICs: Ion 
Channels; CLUE: Connectivity Map; L1000: Library of Integrated 
Network-Based Cellular Signatures; P100:Phosphoproteomics; 
GCP: Gene Expression and Cellular Phenotype; ILC: Immune 
Lung Cancer; MHC: Major Histocompatibility Complex; 
CXCR4: C-X-C Motif Chemokine Receptor 4; CXCR2: C-X-C 
Motif Chemokine Receptor 2; CXCR1: C-X-C Motif Chemokine 
Receptor 1; CCR7: C-C Motif Chemokine Receptor 7; CD2: 
Cluster of Differentiation 2; CD3G: Cluster of Differentiation 
3 Gamma; CD3E: Cluster of Differentiation 3 Epsilon; CD3D: 
Cluster of Differentiation 3 Delta; CD8A: Cluster of Differentiation 
8 Alpha; CD74: Cluster of Differentiation 74; CD79A: Cluster 
of Differentiation 79A; CD79B:Cluster of Differentiation 
79B; CD19: Cluster of Differentiation 19; CD84: Cluster of 
Differentiation 84; LAG3: Lymphocyte Activation Gene 3; TIGIT: 
T Cell Immunoreceptor with Ig and ITIM Domains; IL2RA: 
Interleukin 2 Receptor Alpha; SELL: Selectin L; MRC1:Mannose 
Receptor C-Type 1; VCAN: Versican; HLA: Human Leukocyte 
Antigen; SLAM: Signaling Lymphocytic Activation Molecule; 
ADMET: Absorption, Distribution, Metabolism, Excretion, 
and Toxicity; logP: Logarithm of the partition coefficient; PNG: 
Portable Network Graphics; TIFF: Tagged Image File Format; 
dpi: Dots per Inch; MS-Excel: Microsoft Excel.
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